Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3

Abstract

The retinitis pigmentosa 2 (RP2) gene is responsible for a particular variant of X chromosome–linked eye disease. Previously, RP2 was shown to bind the GTP form of the small G protein Arf-like 3 (Arl3), thus qualifying as an effector. Here we present the Arl3–GppNHp–RP2 complex structure, which shows features resembling complexes with GTPase-activating proteins (GAPs). Biochemical analysis showing a 90,000-fold stimulation of the GTPase reaction together with the structure of an Arl3–GDP–AlF4–RP2 transition state complex showed that RP2 is an efficient GAP for Arl3, with structural features similar to other GAPs. Furthermore, the effect of mutations in patients with retinitis pigmentosa correlated with their effect on catalysis, in particular the mutation of the arginine finger of RP2. The cognate G protein–GAP pair is conserved in yeast as Cin4–Cin2, and the ability of RP2 to act as a GAP can be correlated with its ability to complement a CIN2-deletion phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and biochemical analysis of the Arl3–RP2 interaction.
Figure 2: Involvement of the N terminus of RP2 in Arl3 binding.
Figure 3: Structural view of RP2 as a GAP for Arl3.
Figure 4: Biochemical analysis of RP2 GAP activity toward Arl3.
Figure 5: Influence of RP2 mutations on GTP hydrolysis.
Figure 6: Conservation of the RP2–Arl3 function by yeast Cin2–Cin4.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Haim, M. Epidemiology of retinitis pigmentosa in Denmark. Acta Ophthalmol. Scand. Suppl. 80, 1–34 (2002).

    Article  Google Scholar 

  2. Kennan, A., Aherne, A. & Humphries, P. Light in retinitis pigmentosa. Trends Genet. 21, 103–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hims, M.M., Diager, S.P. & Inglehearn, C.F. Retinitis pigmentosa: genes, proteins and prospects. Dev. Ophthalmol. 37, 109–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Heckenlively, J.R., Boughman, J.A. & Friedman, L.H. Retinitis pigmentosa. (ed. Heckenlively, J.R.) 6–24 (Lippincott, Philadelphia, 1988).

  5. Miano, M.G. et al. Identification of novel RP2 mutations in a subset of X-linked retinitis pigmentosa families and prediction of new domains. Hum. Mutat. 18, 109–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Schwahn, U. et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat. Genet. 19, 327–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Kuhnel, K., Veltel, S., Schlichting, I. & Wittinghofer, A. Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3. Structure 14, 367–378 (2006).

    Article  PubMed  Google Scholar 

  8. Bartolini, F. et al. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J. Biol. Chem. 277, 14629–14634 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Chapple, J.P. et al. Mutations in the N-terminus of the X-linked retinitis pigmentosa protein RP2 interfere with the normal targeting of the protein to the plasma membrane. Hum. Mol. Genet. 9, 1919–1926 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Rosenberg, T., Schwahn, U., Feil, S. & Berger, W. Genotype-phenotype correlation in X-linked retinitis pigmentosa 2 (RP2). Ophthalmic Genet. 20, 161–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Tian, G., Bhamidipati, A., Cowan, N.J. & Lewis, S.A. Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the α/β-tubulin heterodimer. J. Biol. Chem. 274, 24054–24058 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Tian, G. et al. Pathway leading to correctly folded β-tubulin. Cell 86, 287–296 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hoyt, M.A., Stearns, T. & Botstein, D. Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubule-mediated processes. Mol. Cell. Biol. 10, 223–234 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radcliffe, P.A., Hirata, D., Vardy, L. & Toda, T. Functional dissection and hierarchy of tubulin-folding cofactor homologues in fission yeast. Mol. Biol. Cell 10, 2987–3001 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Linari, M., Hanzal-Bayer, M. & Becker, J. The δ subunit of rod specific cyclic GMP phosphodiesterase, PDEδ, interacts with the Arf-like protein Arl3 in a GTP specific manner. FEBS Lett. 458, 55–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A. & Hillig, R.C. The complex of Arl2-GTP and PDEδ: from structure to function. EMBO J. 21, 2095–2106 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burd, C.G., Strochlic, T.I. & Gangi, S. Sr. Arf-like GTPases: not so Arf-like after all. Trends Cell Biol. 14, 687–694 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Avidor-Reiss, T. et al. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Cuvillier, A. et al. LdARL-3A, a Leishmania promastigote-specific ADP-ribosylation factor-like protein, is essential for flagellum integrity. J. Cell Sci. 113, 2065–2074 (2000).

    CAS  PubMed  Google Scholar 

  21. Grayson, C. et al. Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum. Mol. Genet. 11, 3065–3074 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Schrick, J.J., Vogel, P., Abuin, A., Hampton, B. & Rice, D.S. ADP-ribosylation factor-like 3 is involved in kidney and photoreceptor development. Am. J. Pathol. 168, 1288–1298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi, A., Kubota, S., Mori, N., McLaren, M.J. & Inana, G. Photoreceptor synaptic protein HRG4 (UNC119) interacts with ARL2 via a putative conserved domain. FEBS Lett. 534, 26–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Linari, M. et al. The retinitis pigmentosa GTPase regulator, RPGR, interacts with the δ subunit of rod cyclic GMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 96, 1315–1320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meindl, A. et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat. Genet. 13, 35–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi, A. et al. HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest. Ophthalmol. Vis. Sci. 41, 3268–3277 (2000).

    CAS  PubMed  Google Scholar 

  27. Bos, J.L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Bowzard, J.B., Cheng, D., Peng, J. & Kahn, R.A. ELMOD2 is an Arl2 GTPase-activating protein that also acts on Arfs. J. Biol. Chem. 282, 17568–17580 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Rittinger, K., Walker, P.A., Eccleston, J.F., Smerdon, S.J. & Gamblin, S.J. Structure at 1.65 of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758–762 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Nassar, N., Hoffman, G.R., Manor, D., Clardy, J.C. & Cerione, R.A. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nat. Struct. Biol. 5, 1047–1052 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Daumke, O., Weyand, M., Chakrabarti, P.P., Vetter, I.R. & Wittinghofer, A. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 429, 197–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Pan, X., Eathiraj, S., Munson, M. & Lambright, D.G. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442, 303–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bhamidipati, A., Lewis, S.A. & Cowan, N.J. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J. Cell Biol. 149, 1087–1096 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stearns, T., Hoyt, M.A. & Botstein, D. Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics 124, 251–262 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoyt, M.A., Macke, J.P., Roberts, B.T. & Geiser, J.R. Saccharomyces cerevisiae PAC2 functions with CIN1, 2 and 4 in a pathway leading to normal microtubule stability. Genetics 146, 849–857 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jacobs, C.W., Adams, A.E., Szaniszlo, P.J. & Pringle, J.R. Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 107, 1409–1426 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep. 3, 1035–1041 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldberg, J. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Randazzo, P.A. & Hirsch, D.S. Arf GAPs: multifunctional proteins that regulate membrane traffic and actin remodelling. Cell. Signal. 16, 401–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Nie, Z. & Randazzo, P.A. Arf GAPs and membrane traffic. J. Cell Sci. 119, 1203–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Eugster, A., Frigerio, G., Dale, M. & Duden, R. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J. 19, 3905–3917 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Luo, R. et al. Mutational analysis of the Arf1*GTP/Arf GAP interface reveals an Arf1 mutant that selectively affects the Arf GAP ASAP1. Curr. Biol. 15, 2164–2169 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Mandiyan, V., Andreev, J., Schlessinger, J. & Hubbard, S.R. Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein β. EMBO J. 18, 6890–6898 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bi, X., Corpina, R.A. & Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Massof, R.W., Dagnelie, G., Benzschawel, T., Palmer, R.W. & Finkelstein, D. 1st order dynamics of visual-field loss in retinitis-pigmentosa. Clin. Vis. Sci. 5, 1–26 (1990).

    Google Scholar 

  48. Fan, Y. et al. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat. Genet. 36, 989–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Li, J.B. et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117, 541–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Norton, A.W. et al. Evaluation of the 17-kDa prenyl-binding protein as a regulatory protein for phototransduction in retinal photoreceptors. J. Biol. Chem. 280, 1248–1256 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, H. et al. Deletion of PrBP/δ impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc. Natl. Acad. Sci. USA 104, 8857–8862 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, W.D. et al. Identification of a polymorphism (D168N) in the XRP2 gene in Chinese. Hum. Mutat. 17, 354 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Kühlmann and C. Körner for technical assistance, M. Farkasovsky for support in yeast genetic experiments, I. Vetter and M. Weyand for crystallographic assistance and T. Barends, W. Blankenfeldt, Z. Guo and T. Meinhart for X-ray data collection. We are grateful to the staff of beamline X10SA at the Swiss Light Source for their support. We additionally thank W. Berger, Universität Zürich, for providing the RP2 clone, K. Siegers, Max-Planck-Institut für Biochemie, Martinsried, Germany, for providing the CIN2 deletion yeast strain and the CIN2 and CIN4 clones, and N. Cowan, New York University Medical Center, for providing the CoC clone. R.G. was supported by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

S.V. performed all the experiments and their analysis and contributed to their design; R.G. strongly supported crystallization and structure determination; E.E. established the yeast complementation assay and performed preliminary complementation experiments; A.W. supervised all the work, advised on the design of the experiments and wrote the manuscript with S.V.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

Corresponding author

Correspondence to Alfred Wittinghofer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veltel, S., Gasper, R., Eisenacher, E. et al. The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nat Struct Mol Biol 15, 373–380 (2008). https://doi.org/10.1038/nsmb.1396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing