Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB

Abstract

The AcrA–AcrB–TolC complex is the major multidrug efflux pump in Escherichia coli. The asymmetric structure of the trimeric inner-membrane component AcrB implies functional rotation of the monomers and a peristaltic mode of drug efflux. This mechanism suggests the occurrence of conformational changes in the periplasmic pore domain through the movements of subdomains during cycling of the monomers through the different states loose (L), tight (T) and open (O). We introduced cysteines at the interfaces of potentially moving subdomains, leading to disulfide bond formation as quantified by alkylation of free cysteines and MALDI-TOF analysis. Inhibition of pump function as a result of cross-linking caused increased susceptibility to noxious compounds and reduction of N-phenylnaphthylamine efflux. Regain of function for impaired mutants was obtained upon exposure to the reducing agent DTT. The results support the presence of the asymmetric AcrB trimer in E. coli membranes and the functional rotation mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualization of the engineered disulfide bridges.
Figure 2: SDS-PAGE and western blot analysis of single- and double-cysteine mutants of AcrB_cl.
Figure 3: Effect of DTT on N-phenylnaphthylamine (NPN) efflux by E. coli BW25113ΔacrB producing AcrB_cl mutants with disulfide links between the indicated subdomains.

Similar content being viewed by others

References

  1. Poole, K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. 10, 12–26 (2004).

    Article  CAS  Google Scholar 

  2. Zgurskaya, H.I. & Nikaido, H. Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol. 37, 219–225 (2000).

    Article  CAS  Google Scholar 

  3. Murakami, S. & Yamaguchi, A. Multidrug-exporting secondary transporters. Curr. Opin. Struct. Biol. 13, 443–452 (2003).

    Article  CAS  Google Scholar 

  4. Eswaran, J., Koronakis, E., Higgins, M.K., Hughes, C. & Koronakis, V. Three's company: component structures bring a closer view of tripartite drug efflux pumps. Curr. Opin. Struct. Biol. 14, 741–747 (2004).

    Article  CAS  Google Scholar 

  5. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000).

    Article  CAS  Google Scholar 

  6. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002).

    Article  CAS  Google Scholar 

  7. Pos, K.M., Schiefner, A., Seeger, M.A. & Diederichs, K. Crystallographic analysis of AcrB. FEBS Lett. 564, 333–339 (2004).

    Article  CAS  Google Scholar 

  8. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006).

    Article  CAS  Google Scholar 

  9. Seeger, M.A. et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006).

    Article  CAS  Google Scholar 

  10. Mikolosko, J., Bobyk, K., Zgurskaya, H.I. & Ghosh, P. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14, 577–587 (2006).

    Article  CAS  Google Scholar 

  11. Andersen, C. et al. Transition to the open state of the TolC periplasmic tunnel entrance. Proc. Natl. Acad. Sci. USA 99, 11103–11108 (2002).

    Article  CAS  Google Scholar 

  12. Tikhonova, E.B. & Zgurskaya, H.I. AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux Complex. J. Biol. Chem. 279, 32116–32124 (2004).

    Article  CAS  Google Scholar 

  13. Touze, T. et al. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol. Microbiol. 53, 697–706 (2004).

    Article  CAS  Google Scholar 

  14. Lobedanz, S. et al. A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc. Natl. Acad. Sci. USA 104, 4612–4617 (2007).

    Article  CAS  Google Scholar 

  15. Tikhonova, E.B., Wang, Q. & Zgurskaya, H.I. Chimeric analysis of the multicomponent multidrug efflux transporters from Gram-negative bacteria. J. Bacteriol. 184, 6499–6507 (2002).

    Article  CAS  Google Scholar 

  16. Eda, S., Maseda, H. & Nakae, T. An elegant means of self-protection in Gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J. Biol. Chem. 278, 2085–2088 (2003).

    Article  CAS  Google Scholar 

  17. Pos, K.M. & Diederichs, K. Purification, crystallization and preliminary diffraction studies of AcrB, an inner-membrane multi-drug efflux protein. Acta Crystallogr. D Biol. Crystallogr. 58, 1865–1867 (2002).

    Article  Google Scholar 

  18. Yu, E.W., McDermott, G., Zgurskaya, H.I., Nikaido, H. & Koshland, D.E., Jr. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980 (2003).

    Article  CAS  Google Scholar 

  19. Sennhauser, G., Amstutz, P., Briand, C., Storchenegger, O. & Grutter, M.G. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 5, Acta Crystallogr. D Biol. Crystallogr. 5, e7 (2007).

    Google Scholar 

  20. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  21. Nikaido, H. Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 178, 5853–5859 (1996).

    Article  CAS  Google Scholar 

  22. Lomovskaya, O. et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother. 45, 105–116 (2001).

    Article  CAS  Google Scholar 

  23. Colonna-Cesari, F. & Sander, C. Excluded volume approximation to protein-solvent interaction. The solvent contact model. Biophys. J. 57, 1103–1107 (1990).

    Article  CAS  Google Scholar 

  24. Dombkowski, A.A. & Crippen, G.M. Disulfide recognition in an optimized threading potential. Protein Eng. 13, 679–689 (2000).

    Article  CAS  Google Scholar 

  25. Murakami, S., Tamura, N., Saito, A., Hirata, T. & Yamaguchi, A. Extramembrane central pore of multidrug exporter AcrB in Escherichia coli plays an important role in drug transport. J. Biol. Chem. 279, 3743–3748 (2004).

    Article  CAS  Google Scholar 

  26. Woodcock, D.M. et al. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17, 3469–3478 (1989).

    Article  CAS  Google Scholar 

  27. Miroux, B. & Walker, J.E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  Google Scholar 

  28. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1989).

    Google Scholar 

  29. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  30. Schagger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  CAS  Google Scholar 

  31. Molloy, P.L. Electrophoretic mobility shift assays. Methods Mol. Biol. 130, 235–246 (2000).

    CAS  PubMed  Google Scholar 

  32. Kyhse-Andersen, J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods 10, 203–209 (1984).

    Article  CAS  Google Scholar 

  33. Kraft, P., Mills, J. & Dratz, E. Mass spectrometric analysis of cyanogen bromide fragments of integral membrane proteins at the picomole level: application to rhodopsin. Anal. Biochem. 292, 76–86 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MALDI-TOF measurements were performed at the Functional Genomics Center Zurich (FGCZ). We thank P. Gehrig from the FGCZ for assistance with the MALDI-TOF instrument. This work was supported by grants of the TR-SFB Zürich-Konstanz (to K.D.), the ETH Zürich, EMDO Stiftung and the FK of the University of Zürich (to K.M.P.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.S., C.v.B. and K.M.P. designed the experiments; M.A.S., C.v.B, T.E. and L.B. performed the experiments; M.A.S., F.V., K.D. and K.M.P. analyzed the data; M.A.S., K.D. and K.M.P. wrote the article.

Corresponding author

Correspondence to Klaas M Pos.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Methods (PDF 673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeger, M., von Ballmoos, C., Eicher, T. et al. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat Struct Mol Biol 15, 199–205 (2008). https://doi.org/10.1038/nsmb.1379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing