Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacterial polysaccharide co-polymerases share a common framework for control of polymer length

Abstract

The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central α-helix extending 100 Å into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal for its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the periplasmic regions of FepE, WzzE and WzzB(ST).
Figure 2: Stereoview of the clusters of conserved residues.
Figure 3: The PCP oligomers.
Figure 4: Electron microscopy model of full-length WzzE in negative stain.
Figure 5: Mutations in FepE and Wzz and their effects on Oag modal length.
Figure 6: Stereo view of molecular surface of FepE with locations of mutations marked in different colors.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Raetz, C.R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  Google Scholar 

  2. Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68 (2006).

    Article  CAS  Google Scholar 

  3. Samuel, G. & Reeves, P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr. Res. 338, 2503–2519 (2003).

    Article  CAS  Google Scholar 

  4. Morona, R., Van Den Bosch, L. & Daniels, C. Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146, 1–4 (2000).

    Article  CAS  Google Scholar 

  5. Morona, R., Van Den Bosch, L. & Manning, P.A. Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J. Bacteriol. 177, 1059–1068 (1995).

    Article  CAS  Google Scholar 

  6. Burrows, L.L., Chow, D. & Lam, J.S. Pseudomonas aeruginosa B-band O-antigen chain length is modulated by Wzz (Ro1). J. Bacteriol. 179, 1482–1489 (1997).

    Article  CAS  Google Scholar 

  7. Franco, A.V., Liu, D. & Reeves, P.R.A. Wzz (Cld) protein determines the chain length of K lipopolysaccharide in Escherichia coli O8 and O9 strains. J. Bacteriol. 178, 1903–1907 (1996).

    Article  CAS  Google Scholar 

  8. Hong, M. & Payne, S.M. Effect of mutations in Shigella flexneri chromosomal and plasmid-encoded lipopolysaccharide genes on invasion and serum resistance. Mol. Microbiol. 24, 779–791 (1997).

    Article  CAS  Google Scholar 

  9. Murray, G.L., Attridge, S.R. & Morona, R. Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol. Microbiol. 47, 1395–1406 (2003).

    Article  CAS  Google Scholar 

  10. Murray, G.L., Attridge, S.R. & Morona, R. Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J. Bacteriol. 188, 2735–2739 (2006).

    Article  CAS  Google Scholar 

  11. West, N.P. et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317 (2005).

    Article  CAS  Google Scholar 

  12. Barr, K., Klena, J. & Rick, P.D. The modality of enterobacterial common antigen polysaccharide chain lengths is regulated by o349 of the wec gene cluster of Escherichia coli K-12. J. Bacteriol. 181, 6564–6568 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kajimura, J., Rahman, A. & Rick, P.D. Assembly of cyclic enterobacterial common antigen in Escherichia coli K-12. J. Bacteriol. 187, 6917–6927 (2005).

    Article  CAS  Google Scholar 

  14. Vincent, C. et al. Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J. Bacteriol. 181, 3472–3477 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ilan, O. et al. Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. EMBO J. 18, 3241–3248 (1999).

    Article  CAS  Google Scholar 

  16. Paulsen, I.T., Beness, A.M. & Saier, M.H., Jr. Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143, 2685–2699 (1997).

    Article  CAS  Google Scholar 

  17. Daniels, C. & Morona, R. Analysis of Shigella flexneri wzz (Rol) function by mutagenesis and cross-linking: Wzz is able to oligomerize. Mol. Microbiol. 34, 181–194 (1999).

    Article  CAS  Google Scholar 

  18. Daniels, C., Griffiths, C., Cowles, B. & Lam, J.S. Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ. Microbiol. 4, 883–897 (2002).

    Article  CAS  Google Scholar 

  19. Guo, H. et al. Overexpression and characterization of Wzz of Escherichia coli O86:H2. Protein Expr. Purif. 48, 49–55 (2006).

    Article  CAS  Google Scholar 

  20. Doublet, P., Grangeasse, C., Obadia, B., Vaganay, E. & Cozzone, A.J. Structural organization of the protein-tyrosine autokinase Wzc within Escherichia coli cells. J. Biol. Chem. 277, 37339–37348 (2002).

    Article  CAS  Google Scholar 

  21. Collins, R.F. et al. Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J. Biol. Chem. 281, 2144–2150 (2006).

    Article  CAS  Google Scholar 

  22. Collins, R.F. et al. The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. Proc. Natl. Acad. Sci. USA 104, 2390–2395 (2007).

    Article  CAS  Google Scholar 

  23. Bastin, D.A., Stevenson, G., Brown, P.K., Haase, A. & Reeves, P.R. Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol. Microbiol. 7, 725–734 (1993).

    Article  CAS  Google Scholar 

  24. Petersen, F.N., Jensen, M.O. & Nielsen, C.H. Interfacial tryptophan residues: a role for the cation-pi effect? Biophys. J. 89, 3985–3996 (2005).

    Article  CAS  Google Scholar 

  25. Senes, A., Engel, D.E. & DeGrado, W.F. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14, 465–479 (2004).

    Article  CAS  Google Scholar 

  26. Wu, T. et al. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 103, 11754–11759 (2006).

    Article  CAS  Google Scholar 

  27. Sperandeo, P. et al. Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J. Bacteriol. 189, 244–253 (2007).

    Article  CAS  Google Scholar 

  28. Marolda, C.L., Tatar, L.D., Alaimo, C., Aebi, M. & Valvano, M.A. Interplay of the Wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide o antigen. J. Bacteriol. 188, 5124–5135 (2006).

    Article  CAS  Google Scholar 

  29. McNulty, C. et al. The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD, RhsA and a multi-protein complex at the pole of the cell. Mol. Microbiol. 59, 907–922 (2006).

    Article  CAS  Google Scholar 

  30. Daniels, C., Vindurampulle, C. & Morona, R. Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol. Microbiol. 28, 1211–1222 (1998).

    Article  CAS  Google Scholar 

  31. von Dohren, H. Biochemistry and general genetics of nonribosomal peptide synthetases in fungi. Adv. Biochem. Eng. Biotechnol. 88, 217–264 (2004).

    PubMed  Google Scholar 

  32. Dorrestein, P.C. & Kelleher, N.L. Dissecting non-ribosomal and polyketide biosynthetic machineries using electrospray ionization Fourier-Transform mass spectrometry. Nat. Prod. Rep. 23, 893–918 (2006).

    Article  CAS  Google Scholar 

  33. Morona, R., Daniels, C. & Van Den Bosch, L. Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 149, 925–939 (2003).

    Article  CAS  Google Scholar 

  34. Perna, N.T., Plunkett, G.I., Blattner, F.R., Mau, B. & Blattner, F.R. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  37. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  Google Scholar 

  38. Terwilliger, T.C. Automated structure solution, density modification and model building. Acta Crystallogr. D Biol. Crystallogr. 58, 1937–1940 (2002).

    Article  Google Scholar 

  39. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  40. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  45. Van Den Bosch, L., Manning, P.A. & Morona, R. Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol. Microbiol. 23, 765–775 (1997).

    Article  CAS  Google Scholar 

  46. Rubinstein, J.L. Structural analysis of membrane protein complexes by single particle electron microscopy. Methods 41, 409–416 (2007).

    Article  CAS  Google Scholar 

  47. Crowther, R.A., Henderson, R. & Smith, J.M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  Google Scholar 

  48. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  49. Grigorieff, N. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J. Mol. Biol. 277, 1033–1046 (1998).

    Article  CAS  Google Scholar 

  50. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.D. Schrag, M. Whiteway, J. Paton and T. Vernet for comments on the manuscript, S. Gruenheid (McGill University, Montréal) for E. coli O157:H7 EDL933 genomic DNA and L. Flaks, A. Soares and H. Robinson for assistance in synchrotron X-ray data collection. Data for this study were measured at beamlines X8C, X12B and X29 of the National Synchrotron Light Source. Financial support comes principally from the Offices of Biological and Environmental Research and Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources of the US National Institutes of Health. Use of the SGX Collaborative Access Team (SGX-CAT) beamline facilities at Sector 31 of the Advanced Photon Source was provided by SGX Pharmaceuticals, Inc., who constructed and operate the facility. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported in part by the National Research Council of Canada and the Canadian Institutes of Health Research (CIHR) grant MOP-48370 (M.C.) and by an Australian National Health and Medical Research Council Program Grant (R.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.T. determined and refined crystal structures of FepE, WzzE and WzzB, purified full-length WzzE; J.W. cloned the constructs; C.M., A.P. and E.A. purified and crystallized the PCPs, WzzE; J.F. analyzed oligomerization states and purified full-length FepE; A.M. collected data for all the crystals and contributed to writing of the manuscript; L.P. constructed and characterized FepE(O157) and WzzpHS2 mutants; M.P. constructed and characterized WzzB(SF) mutants; L.V.D.B. prepared antiserum to FepE, isolated and characterized WzzB(ST) mutants; J.L.R. performed EM experiments and data analysis; M.C. and R.M. planned experiments, analyzed data and contributed to writing of the manuscript.

Corresponding author

Correspondence to Miroslaw Cygler.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 1813 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tocilj, A., Munger, C., Proteau, A. et al. Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol 15, 130–138 (2008). https://doi.org/10.1038/nsmb.1374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing