Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase

Abstract

The Na,K-ATPase hydrolyzes ATP to drive the coupled extrusion and uptake of Na+ and K+ ions across the plasma membrane. Here, we report two high-resolution NMR structures of the 213-residue nucleotide-binding domain of rat α1 Na,K-ATPase, determined in the absence and the presence of ATP. The nucleotide binds in the anti conformation and shows a relative paucity of interactions with the protein, reflecting the low-affinity ATP-binding state. Binding of ATP induces substantial conformational changes in the binding pocket and in residues located in the hinge region connecting the N- and P-domains. Structural comparison with the Ca-ATPase stabilized by the inhibitor thapsigargin, E2(TG), and the model of the H-ATPase in the E1 form suggests that the observed changes may trigger the series of events necessary for the release of the K+ ions and/or disengagement of the A-domain, leading to the eventual transfer of the γ-phosphate group to the invariant Asp369.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution structure of the N-domain of NaKα1.
Figure 2: ATP binding to the N-domain of NaKα1.
Figure 3: Docking and superposition of the native (green) and ATP-bound (red) N-domain of NaKα1, the E2(TG) form of Ca-ATPase (violet) and E1 form of H-ATPase (blue).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Skou, J.C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23, 394–401 (1957).

    Article  CAS  Google Scholar 

  2. Horisberger, J.D., Lemas, V., Krähenbühl, J.P. & Rossier, B.C. Structure-function relationship of Na,K-ATPase. Annu. Rev. Physiol. 53, 565–584 (1991).

    Article  CAS  Google Scholar 

  3. Post, R.L., Hegyvary, C. & Kume, S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540 (1972).

    CAS  PubMed  Google Scholar 

  4. Jorgensen, J.R. & Pedersen, P.A. Role of phylogenetically conserved amino acids in folding of Na,K-ATPase. Biochemistry 40, 7301–7308 (2001).

    Article  CAS  Google Scholar 

  5. Kaplan, J.H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535 (2002).

    Article  CAS  Google Scholar 

  6. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    Article  CAS  Google Scholar 

  7. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002).

    Article  CAS  Google Scholar 

  8. Zhang, P., Toyoshima, C., Yonekura, K., Green, N.M. & Stokes, D.L. Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature 392, 835–839 (1998).

    Article  CAS  Google Scholar 

  9. Xu, C., Rice, W.J., He, W. & Stokes, D.L. A structural model for the catalytic cycle of Ca2+-ATPase. J. Mol. Biol. 316, 201–211 (2002).

    Article  CAS  Google Scholar 

  10. Rice, W.J., Young, H.S., Martin, D.W., Sachs, J.R. & Stokes, D.L. Structure of Na+,K+-ATPase at 11-Å resolution: comparison with Ca2+- ATPase in E1 and E2 states. Biophys. J. 80, 2187–2197 (2001).

    Article  CAS  Google Scholar 

  11. Hebert, H., Purhonen, P., Vorum, H., Thomsen, K. & Maunsbach, A.B. Three-dimensional structure of renal Na,K-ATPase from cryo-electron microscopy of two-dimensional crystals. J. Mol. Biol. 314, 479–494 (2001).

    Article  CAS  Google Scholar 

  12. Auer, M., Scarborough, G.A. & Kühlbrandt, W. Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392, 840–843 (1998).

    Article  CAS  Google Scholar 

  13. Toyofuku, T., Kurzydlowski, K., Tada, M. & MacLennan, D.H. Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca2+-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J. Biol. Chem. 269, 22929–22932 (1994).

    CAS  PubMed  Google Scholar 

  14. Jorgensen, P.L. & Pedersen, P.A. Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase. Biochim. Biophys. Acta 1505, 57–74 (2001).

    Article  CAS  Google Scholar 

  15. McIntosh, D.B., Woolley, D.G., Vilsen, B. & Andersen, J.P. Mutagenesis of segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of sarcoplasmic reticulum Ca2+-ATPase produces pumps defective in ATP binding. J. Biol. Chem. 271, 25778–25789 (1996).

    Article  CAS  Google Scholar 

  16. Wang, K. & Farley, R.A. Lysine 480 is not an essential residue for ATP-binding or hydrolysis by Na,K-ATPase. J. Biol. Chem. 267, 3577–3580 (1992).

    CAS  PubMed  Google Scholar 

  17. Jacobsen, M.D., Pedersen, P.A. & Jorgensen, P.L. Importance of Na,K-ATPase residue α1-Arg544 in the segment Arg544- Asp567 for high-affinity binding of ATP, ADP, or MgATP. Biochemistry 41, 1451–1456 (2002).

    Article  CAS  Google Scholar 

  18. Teramachi, S., Imagawa, T., Kaya, S. & Taniguchi, K. Replacement of several single amino acid side chains exposed to the inside of the ATP-binding pocket induces different extents of affinity change in the high and low affinity ATP-binding sites of rat Na/K-ATPase. J. Biol. Chem. 270, 37394–37400 (2002).

    Article  Google Scholar 

  19. Kühlbrandt, W., Zeelen, J. & Dietrich, J. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 297, 1692–1696 (2002).

    Article  Google Scholar 

  20. Jordan, C., Püschel, B., Koob, R. & Drenckhahn, D. Identification of a binding motif for ankyrin on the α-subunit of Na+,K+-ATPase. J. Biol. Chem. 270, 29971–29975 (1995).

    Article  CAS  Google Scholar 

  21. Therien, A.G. & Blostein, R. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 279, C541–566 (2000).

    Article  CAS  Google Scholar 

  22. Doné, S.C. et al. Tyrosine 537 within the Na+,K+-ATPase α-subunit is essential for AP-2 binding and clathrin-dependent endocytosis. J. Biol. Chem. 277, 17108–17111 (2002).

    Article  Google Scholar 

  23. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  Google Scholar 

  24. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  25. Bartels, C., Xia, T.H., Billeter, M., Güntert, P. & Wüthrich, K. The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1–10 (1995).

    Article  CAS  Google Scholar 

  26. Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).

    Article  CAS  Google Scholar 

  27. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  Google Scholar 

  28. Cornell, W.D. et al. A second generation force-field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).

    Article  CAS  Google Scholar 

  29. Koradi, R., Billeter, M. & Güntert, P. Point-centered domain decomposition for parallel molecular dynamics simulation. Comput. Phys. Commun. 124, 139–147 (2000).

    Article  CAS  Google Scholar 

  30. Vriend, G. WHATIF: a molecular modeling and drug design program. J. Mol. Graph. 52, 29–36 (1990).

    Google Scholar 

  31. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  32. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  33. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  34. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  35. Humphrey, W., Dalke, A. & Schulten, K. VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  36. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    Article  CAS  Google Scholar 

  37. Kleywegt, G.J. & Jones, T.A. A super position. ESF/CCP4 Newslett. 31, 9–14 (1994).

    Google Scholar 

  38. Garrett, D.S., Seok, Y.J., Peterkofsky, A., Clore, G.M. & Gronenborn, A.M. Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry 36, 4393–4398 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.L. van der Plas, J. Plaisier and N. Pannu for setting up software and writing several useful programs, W.J. Rice and co-workers for kindly providing the 11-Å EM map of Na,K-ATPase, R.A.G. de Graaff for critical reading of the manuscript and S. Hilge for professional help with the figures. This work was supported by grants to M.H. of the Swiss National Foundation, the Netherlands Organisation for Scientific Research (NWO) and Technologie stichting STW. G.S. acknowledges the Dutch Royal Academy of Sciences for fellowship support. P.G. acknowledges the Tatsuo Miyazawa Memorial Program of RIKEN for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hilge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilge, M., Siegal, G., Vuister, G. et al. ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase. Nat Struct Mol Biol 10, 468–474 (2003). https://doi.org/10.1038/nsb924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing