Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Product-assisted catalysis in base-excision DNA repair

Abstract

Most spontaneous damage to bases in DNA is corrected through the action of the base-excision DNA repair pathway. Base excision repair is initiated by DNA glycosylases, lesion-specific enzymes that intercept aberrant bases in DNA and catalyze their excision. How such proteins accomplish the feat of catalyzing no fewer than five sequential reaction steps using a single active site has been unknown. To help answer this, we report the structure of a trapped catalytic intermediate in DNA repair by human 8-oxoguanine DNA glycosylase. This structure and supporting biochemical results reveal that the enzyme sequesters the excised lesion base and exploits it as a cofactor to participate in catalysis. To our knowledge, the present example represents the first documented case of product-assisted catalysis in an enzyme-catalyzed reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of base-excision repair catalyzed by hOGG1.
Figure 2: Close-up view of the hOGG1 active site region.
Figure 3: Interactions of the sequestered oxoG base with other components in the active site of the borohydride-trapped complex.
Figure 4: Purine analogs as cofactors for hOGG1 in the β-lyase cascade that promotes DNA strand scission.
Figure 5: Active site stereo views of the structures of the nucleobase-soaked and abasic-trapped complexes.
Figure 6: Stereochemistry of C2′ proton abstraction.
Figure 7: Detailed stepwise mechanistic proposal for the entire cascade of reactions catalyzed by hOGG1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lindahl, T. & Wood, R.D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Krokan, H.E., Standal, R. & Slupphaug, G. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1–16 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schärer, O.D. & Jiricny, J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23, 270–281 (2001).

    Article  PubMed  Google Scholar 

  4. Dodson, M.L., Michaels, M.L. & Lloyd, R.S. Unified catalytic mechanism for DNA glycosylases. J. Biol. Chem. 269, 32709–32712 (1994).

    CAS  PubMed  Google Scholar 

  5. Weiss, B. & Grossman, L. Phosphodiesterases involved in DNA repair. Adv. Enzymol. Relat. Areas Mol. Biol. 60, 1–34 (1987).

    CAS  PubMed  Google Scholar 

  6. Sun, B., Latham, K.A., Dodson, M.L. & Lloyd, R.S. Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates. J. Biol. Chem. 270, 19501–19508 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Nash, H.M. et al. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 6, 968–980 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Bruner, S.D., Nash, H.M., Lane, W.S. & Verdine, G.L. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr. Biol. 8, 393–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Piersen, C.E., Prince, M.A., Augustine, M.L., Dodson, M.L. & Lloyd, R.S. Purification and cloning of Micrococcus luteus ultraviolet endonuclease, an N-glycosylase/abasic lyase that proceeds via an imino enzyme-DNA intermediate. J. Biol. Chem. 270, 23475–23484 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Nash, H.M., Lu, R., Lane, W.S. & Verdine, G.L. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution. Chem. Biol. 4, 693–702 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Zharkov, D.O., Rieger, R.A., Iden, C.R. & Grollman, A.P. NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein. J. Biol. Chem. 272, 5335–5341 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, R., Nash, H.M. & Verdine, G.L. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 7, 397–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Arai, K. et al. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 14, 2857–2861 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Roldan-Arjona, T. et al. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. USA 94, 8016–8020 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bjoras, M. et al. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 16, 6314–6322 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenquist, T.A., Zharkov, D.O. & Grollman, A.P. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl. Acad. Sci. USA 94, 7429–7434 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radicella, J.P., Dherin, C., Desmaze, C., Fox, M.S. & Boiteux, S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 8010–8015 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuo, F.C. & Sklar, J. Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J. Exp. Med. 186, 1547–1556 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aburatani, H. et al. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 57, 2151–2156 (1997).

    CAS  PubMed  Google Scholar 

  20. Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis 21, 361–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Bruner, S.D., Norman, D.P. & Verdine, G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Norman, D.P.G., Bruner, S.D. & Verdine, G.L. Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein. J. Am. Chem. Soc. 123, 359–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Labahn, J. et al. Structural basis for the excision repair of alkylation-damaged DNA. Cell 86, 321–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Thayer, M.M., Ahern, H., Xing, D., Cunningham, R.P. & Tainer, J.A. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 14, 4108–4120 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wright, P.M., Yu, J., Cillo, J. & Lu, A.L. The active site of the Escherichia coli MutY DNA adenine glycosylase. J. Biol. Chem. 274, 29011–29018 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Norman, D.P.G., Chung, S.J. & Verdine, G.L. Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase. Biochemistry, advance online publication, 24 January 2003 (DOI 10.1021/bi026823d).

  27. Hollis, T., Ichikawa, Y. & Ellenberger, T. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. EMBO J. 19, 758–766 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zharkov, D.O., Rosenquist, T.A., Gerchman, S.E. & Grollman, A.P. Substrate specificity and reaction mechanism of murine 8-oxoguanine-DNA glycosylase. J. Biol. Chem. 275, 28607–28617 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Mazumder, A. et al. Stereochemical studies of the β-elimination reactions at aldehydic abasic sites in DNA: endonuclease III from Escherichia coli, sodium hydroxide, and Lys-Trp-Lys. Biochemistry 30, 1119–1126 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Creighton, T.E. Proteins (Freeman, New York; 1993).

  31. Drohat, A.C. & Stivers, J.T. NMR evidence for an unusually low N1 pKa for uracil bound to uracil DNA glycosylase: implications for catalysis. J. Am. Chem. Soc. 122, 1840–1841 (2000).

    Article  CAS  Google Scholar 

  32. Dall'Acqua, W. & Carter, P. Substrate-assisted catalysis: molecular basis and biological significance. Protein Sci. 9, 1–9 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Widlanski, T.S., Bender, S.L. & Knowles, J.R. Dehydroquinate synthase: a sheep in wolf's clothing? J. Am. Chem. Soc. 111, 2299–2300 (1989).

    Article  CAS  Google Scholar 

  34. Otwinowski, Z. & Minor, W.M. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Brunella, A. & Ghisalba, O. Recombinant Lactobacillus leichmannii ribonucleosidetriphosphate reductase as a biocatalyst in the preparative synthesis of 2′-deoxyribonucleoside-5′-triphosphates. J. Mol. Cat. B Enzym. 10, 215–222 (2000).

    Article  CAS  Google Scholar 

  37. Brunger, A.T. & Karplus, M. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins 4, 1481–1456 (1988).

    Article  Google Scholar 

  38. Schaefer, M., Sommer, M. & Karplus, M. pH-dependence of protein stability: absolute electrostatic free energy differences between conformations. J. Phys. Chem. B 101, 1663–1683 (1997).

    Article  CAS  Google Scholar 

  39. MacKerell, A.D. Jr. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Bayly, C.I., Cieplak, P., Cornell, W. & Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  41. Brooks, C.L. III, Brunger, A.T. & Karplus, M. Active site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach. Biopolymers 24, 843–865 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Simonson, T., Archontis, G. & Karplus, M. Continuum treatment of long-range interactions in free energy calculations. Application to protein-ligand binding. J. Phys. Chem. B 101, 8347–8360 (1997).

    Article  CAS  Google Scholar 

  43. Brooks, C.L. III & Karplus, M. Deformable stochastic boundaries in molecular dynamics. J. Chem. Phys. 79, 6312–6325 (1983).

    Article  CAS  Google Scholar 

  44. Stote, R.H., States, D.J. & Karplus, M. On the treatment of electrostatic interactions in biomolecular simulation. J. Chim. Phys. Phys.-Chim. Biol. 88, 2419–2433 (1991).

    Article  CAS  Google Scholar 

  45. Steinbach, P.J. & Brooks, B.R. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem. 15, 667–683 (1994).

    Article  CAS  Google Scholar 

  46. Kumar, S., Bouzida, D., Swendsen, R.H., Kollman, P.A. & Rosenberg, J.M. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    Article  CAS  Google Scholar 

  47. Fletcher, R. & Powell, M.J.D. A rapidly convergent descent method for minimization. Comput. J. 6, 163 (1963).

    Article  Google Scholar 

  48. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 104–149 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

Use of the Argonne National Laboratory Structural Biology Center beamlines at the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Biological and Environmental Research. J.C.F. was supported by an NIH BCMB training grant and by a Graduate Research Fellowship from the NSF. S.D.B is an Eli Lilly Fellow. We are grateful to D.P.G. Norman for assistance with data collection and processing and for helpful discussions. We thank C. Heaton and the entire MacCHESS staff for assistance with data collection. R. Sanishvili, S. Korolev, S. Ginell and A. Joachimak of SBC-CAT at the Advanced Photon Source, Argonne National Laboratory provided valuable advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Verdine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromme, J., Bruner, S., Yang, W. et al. Product-assisted catalysis in base-excision DNA repair. Nat Struct Mol Biol 10, 204–211 (2003). https://doi.org/10.1038/nsb902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing