Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin

Abstract

The calmodulin-binding domain of myristoylated alanine-rich C kinase substrate (MARCKS), which interacts with various targets including calmodulin, actin and membrane lipids, has been suggested to function as a crosstalk point among several signal transduction pathways. We present here the crystal structure at 2 Å resolution of a peptide consisting of the MARCKS calmodulin (CaM)-binding domain in complex with Ca2+-CaM. The domain assumes a flexible conformation, and the hydrophobic pocket of the calmodulin N-lobe, which is a common CaM-binding site observed in previously resolved Ca2+-CaM–target peptide complexes, is not involved in the interaction. The present structure presents a novel target-recognition mode of calmodulin and provides insight into the structural basis of the flexible interaction module of MARCKS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CaM-binding domain of MARCKS-related proteins.
Figure 2: Comparison of the complex with other CaM–target peptide complexes.
Figure 3: Titration of dansyl-CaM with the 19-residue MARCKS peptide.
Figure 4: Crystal structure of MARCKS peptide–CaM complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Stumpo, D.J., Bock, C.B., Tuttle J.S. & Blackshear, P.J. MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc. Natl. Acad. Sci. USA 92, 944–948 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aderem, A. The MARCKS brothers: a family of protein kinase C substrates. Cell 71, 713–716 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Blackshear, P.J. The MARCKS family of cellular protein kinase C substrates. J. Biol. Chem. 268, 1501–1504 (1993).

    CAS  PubMed  Google Scholar 

  4. Matsubara, M., Yamauchi, E., Hayashi, N. & Taniguchi, H. MARCKS, a major protein kinase C substrate, assumes non-helical conformations both in solution and in complex with Ca2+-calmodulin. FEBS Lett. 421, 203–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., Arbuzova, A., Hangyas-Mihalyne, G. & McLaughlin, S. The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 276, 5012–5019 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Taniguchi, H. & Manenti, S. Interaction of myristoylated alanine-rich C substrate (MARCKS) with membrane phospholipids. J. Biol. Chem. 268, 9960–9963 (1993).

    CAS  PubMed  Google Scholar 

  7. Jin, C.S., Ahn, J.K., Meadows, G.G. & Joe, C.O. Tob-mediated cross-talk between MARCKS phosphorylation and ErbB-2 activation. Biochem. Biophys. Res. Commun. 283, 273–277 (2001).

    Article  Google Scholar 

  8. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Meador, W.E., Means, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262, 1718–1721 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Osawa, M. et al. A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin–dependent kinase kinase. Nat. Struct. Biol. 6, 819–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Rhoads, A.R. & Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J. 11, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Yap, K.L. et al. Calmodulin target database. J. Struct. Funct. Genomics 1, 8–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Qin, Z., Wertz, S.L. Jacob, J., Savino, Y. & Cafiso, D.S. Defining protein-protein interactions using site-directed spin-labeling: the binding of protein kinase C substrates to calmodulin. Biochemistry 35, 13272–13276 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Porumb, T., Crivici, A., Blackshear, P.J. & Ikura, M. Calcium binding and conformational properties of calmodulin complexed with peptides derived from myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP). Eur. Biophys. J. 23, 239–247 (1997).

    Article  Google Scholar 

  15. Matsubara, M., Hayashi, N., Titani, K. & Taniguchi, H. Circular dichroism and 1H NMR studies on the structures of peptides derived from the calmodulin-binding domains of inducible and endothelial nitric-oxide synthase in solution and in complex with calmodulin. J. Biol. Chem. 272, 23050–23056 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Ulrich, A. et al. Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 97, 5191–5196 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ikura, M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 21, 14–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Schumacher, M.A., Rivard, A.F., Bachinger, H.P. & Adelman, J.P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410, 1120–1124 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Drum, C.L. et al. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415, 396–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Elshorst, B. et al. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry 38, 12320–12332 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Graff, J.M., Young, T.N., Johnson, D. & Blackshear, P.J. Phosphorylation-regulated calmodulin binding to a prominent cellular substrate for protein kinase C. J. Biol. Chem. 264, 21818–21823 (1989).

    CAS  PubMed  Google Scholar 

  22. Palmer, R.H. et al. PRK1 phosphorylates MARCKS at the PKC sites: serine 152, serine 156 and serine 163. FEBS Lett. 378, 281–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Nagumo, H. et al. Rho-associated kinase phosphorylates MARCKS in human neuronal cells. Biochem. Biophys. Res. Commun. 280, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. McIlroy, B.K., Walters, J.D., Blackshear, P.J. & Johnson, J.D. Phosphorylation-dependent binding of a synthetic MARCKS peptide to calmodulin. J. Biol. Chem. 266, 4959–4964 (1991).

    CAS  PubMed  Google Scholar 

  25. Blackshear, P.J., Verghese, G.M., Johnson, J.D., Haupt, D.M. & Stumpo, D.J. Characteristics of the F52 protein, a MARCKS homologue. J. Biol. Chem. 267, 13540–13546 (1992).

    CAS  PubMed  Google Scholar 

  26. Matsuoka, Y., Hughes, C.A. & Bennett, V. Adducin regulation. Definition of the calmodulin-binding domain and sites of phosphorylation by protein kinases A and C. J. Biol. Chem. 271, 25157–25166 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, K.L., Khan, M.T. & Roufogalis, B.D. Identification and characterization of a calmodulin-binding domain in Ral-A, a Ras-related GTP-binding protein purified from human erythrocyte membrane. J. Biol. Chem. 272, 16002–16009 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Faux, M.C. & Scott, J.D. Regulation of the AKAP79-protein kinase C interaction by Ca2+-Calmodulin. J. Biol. Chem. 272, 17038–17044 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Pronin, A.N., Satpaev, D.K., Slepak, V.Z. & Benovic, J.L. Regulation of G protein-coupled receptor kinases by calmodulin and localization of the calmodulin binding domain. J. Biol. Chem. 272, 18273–18280 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Bubb, M., Lenox, R.H. & Edison, A.S. Phosphorylation-dependent conformational changes induce a switch in the actin-binding function of MARCKS. J. Biol. Chem. 274, 36472–36478 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Wright, P.E. & Dyson H.J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Otwinowski, Z. DENZO. in Proceedings of the CCP4 Study Weekend: Data Collection and Processing. (eds. Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  34. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  35. Harmat, V. et al. A new potent calmodulin antagonist with arylalkylamine structure: crystallographic, spectroscopic and functional studies. J. Mol. Biol. 297, 747–755 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Roussel, A. & Cambillau, C. TURBO-FRODO Manual (AFMB-CNRS, Marseille; 1996).

    Google Scholar 

  37. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crysallogr. D 50, 760–763 (1994).

  38. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  39. Li, Z., Rossi, E.A., Hoheisel, J.D., Kalderon, D. & Rubin, C.S. Generation of a novel A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog from a single gene. J. Biol. Chem. 274, 27191–27200 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  41. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Yamamoto and T. Kumasaka for X-ray diffraction data collection and data processing at beamline BL45XU-SAX. We thank O. de Montellano for providing the human CaM cDNA. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisaaki Taniguchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamauchi, E., Nakatsu, T., Matsubara, M. et al. Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin. Nat Struct Mol Biol 10, 226–231 (2003). https://doi.org/10.1038/nsb900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb900

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing