Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3

Abstract

Site-specific lysine methylation of histones by SET domains is a hallmark for epigenetic control of gene transcription in eukaryotic organisms. Here we report that a SET domain protein from Paramecium bursaria chlorella virus can specifically di-methylate Lys27 in histone H3, a modification implicated in gene silencing. The solution structure of the viral SET domain reveals a butterfly-shaped head-to-head symmetric dimer different from other known protein methyltransferases. Each subunit consists of a Greek-key antiparallel β-barrel and a three-stranded open-faced sandwich that mediates the dimer interface. Cofactor S-adenosyl-L-methionine (SAM) binds at the opening of the β-barrel, and amino acids C-terminal to Lys27 in H3 and in the flexible C-terminal tail of the enzyme confer the specificity of this viral histone methyltransferase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based sequence alignment of SET domains.
Figure 2: Histone methyltransferase activity of vSET.
Figure 3: Structure determination of the vSET dimer.
Figure 4: Three-dimensional structure of the vSET dimer.
Figure 5: SAM and substrate recognition of vSET.
Figure 6: Mutational analysis of vSET.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones, R.S. & Gelbart, W.M. The Drosophila Polycomb-group gene Enhancer of Zeste contains a region with sequence similarity to Trithorax. Mol. Cell. Biol. 13, 6357–6366 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stassen, M.J., Bailey, D., Nelson, S., Chinwalla, V. & Harte, P.J. The Drosophila Trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech. Dev. 52, 209–223 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jenuwein, T. Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 11, 266–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Turner, B.M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Noma, K.-I., Allis, C.D. & Grewal, S.I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Schotta, G. et al. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Strahl, B.D. et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell Biol. 22, 1298–1306 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Heard, E. et al. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107, 727–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Tamaru, H. & Selker, E.U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Taverna, S.D., Coyne, R.C. & Allis, C.D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110, 701–711 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Briggs, S.D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286–3295 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207–1217 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489 (2001).

    Article  Google Scholar 

  25. Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Fang, J. et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol. 12, 1086–1099 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Van Etten, J.L. & Meints, R.H. Giant viruses infecting algae. Annu. Rev. Microbiol. 53, 447–494 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y. et al. Analysis of 74 kb of DNA located at the right end of the 330-kb chlorella virus PBCV-1 genome. Virology 237, 360–377 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. NMR Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  35. Clore, G.M. & Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 249–363 (1994).

    Google Scholar 

  36. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, X., Zhou, L. & Cheng, X. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J. 19, 3509–3519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weiss, V.H. et al. The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat. Struct. Biol. 7, 1165–1171 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Rozovskaia, T. et al. Trithorax and ASH1 interact directly and associate with the trithorax group-responsive bxd region of the Ultrabithorax promoter. Mol. Cell Biol. 19, 6441–6447 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rozovskaia, T. et al. Self-association of the SET domains of human ALL-1 and of Drosophila TRITHORAX and ASH1 proteins. Oncogene 19, 351–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wilson, J. et al. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111, 105–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Jacobs, S.A. et al. The active site of the SET domain is constructed on a knot. Nat. Struct. Biol. 9, 833–838 (2002).

    CAS  PubMed  Google Scholar 

  43. Zhang, X. et al. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111, 117–127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Min, J., Zhang, X., Cheng, X., Grewal, S.I. & Xu, R.M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9, 828–832 (2002).

    CAS  PubMed  Google Scholar 

  45. Trievel, R., Beach, B., Dirk, L., Houtz, R. & Hurley, J. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111, 91–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Yamazaki, T., Lee, W., Arrowsmith, C.H., Mahandiram, D.R. & Kay, L.E. A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).

    Article  CAS  Google Scholar 

  47. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Delaglio, R. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Johnson, B.A. & Blevins, R.A. NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Brunger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR (Yale University Press, New Haven; 1993).

    Google Scholar 

  51. Nilges, M. & O'Donoghue, S. Ambiguous NOEs and automated NOE assignment. Prog. NMR Spectrosc. 32, 107–139 (1998).

    Article  CAS  Google Scholar 

  52. Nilges, M. A Calculation strategy for the structure determination of symmetry dimers by 1H NMR. Proteins 17, 297–309 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Van Etten for providing the cDNA clone of PBCV-1 SET domain protein, and L. Chen and S. Mutjaba for technical advice. We are also grateful to A. Lustig (Biozentrum, University of Basel, Switzerland) for performing the analytic ultracentrifugation experiments. A.F. is a recipient of a Wellcome Trust Postdoctoral Fellowship. The work was supported by a grant from the National Institutes of Health to M.-M.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzur, K., Farooq, A., Zeng, L. et al. A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nat Struct Mol Biol 10, 187–196 (2003). https://doi.org/10.1038/nsb898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing