Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attenuation of a phosphorylation-dependent activator by an HDAC–PP1 complex

Abstract

The second messenger cAMP stimulates transcription with burst-attenuation kinetics that mirror the PKA-dependent phosphorylation and subsequent protein phosphatase 1 (PP1)–mediated dephosphorylation of the cAMP responsive element binding protein (CREB) at Ser133. Phosphorylation of Ser133 promotes recruitment of the co-activator histone acetylase (HAT) paralogs CBP and P300, which in turn stimulate acetylation of promoter-bound histones during the burst phase. Remarkably, histone deacetylase (HDAC) inhibitors seem to potentiate CREB activity by prolonging Ser133 phosphorylation in response to cAMP stimulus, suggesting a potential role for HDAC complexes in silencing CREB activity. Here we show that HDAC1 associates with and blocks Ser133 phosphorylation of CREB during pre-stimulus and attenuation phases of the cAMP response. HDAC1 promotes Ser133 dephosphorylation via a stable interaction with PP1, which we detected in co-immunoprecipitation and co-purification studies. These results illustrate a novel mechanism by which signaling and chromatin-modifying activities act coordinately to repress the activity of a phosphorylation-dependent activator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CREB associates with active class I HDACs.
Figure 2: HDAC1 is recruited to a cAMP-responsive promoter during pre-stimulus and attenuation phases.
Figure 3: HDAC1 disrupts Ser133 phosphorylation of CREB in response to cAMP.
Figure 4: HDAC1 associates with PP1C.
Figure 5: HDAC1 disrupts CREB phosphorylation via an association with PP1.

Similar content being viewed by others

References

  1. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lonze, B. & Ginty, D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez, G.A. & Montminy, M.R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at Serine 133. Cell 59, 675–680 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Brindle, P., Linke, S. & Montminy, M. Analysis of a PK-A dependent activator in CREB reveals a new role for the CREM family of repressors. Nature 364, 821–824 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Quinn, P.G. Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J. Biol. Chem. 268, 16999–17009 (1993).

    CAS  PubMed  Google Scholar 

  7. Chrivia, J.C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Kwok, R. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Arias, J. et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226–228 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Ferreri, K., Gill, G. & Montminy, M. The cAMP regulated transcription factor CREB interacts with a component of the TFIID complex. Proc. Natl. Acad. Sci. USA 91, 1210–1213 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakajima, T., Uchida, C., Anderson, S., Parvin, J. & Montminy, M. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 11, 738–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Felinski, E., Kim, J., Lu, J. & Quinn, P. Recruitment of an RNA polymerase II complex is mediated by the constitutive activation domain in CREB, independently of CREB phosphorylation. Mol. Cell. Biol. 21, 1001–1010 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korzus, E. et al. Transcription factor–specific requirements for coactivators and their acetyltransferase functions. Science 279, 703–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Asahara, H., Santoso, B., Du, K., Cole, P. & Montminy, M. Chromatin dependent cooperativity between constitutive and inducible activation domains in CREB. Mol. Cell. Biol. 21, 7892–7900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hagiwara, M. et al. Transcriptional attenuation following cAMP induction requires PP1-mediated dephosphorylation of CREB. Cell 70, 105–113 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Alberts, A.S., Montminy, M., Shenolikar, S. & Feramisco, J.R. Expression of a peptide inhibitor of protein phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Mol. Cell. Biol. 14, 4398–4407 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alberts, A.S., Arias, J., Hagiwara, M., Montminy, M.R. & Feramisco, J.R. Recombinant cyclic AMP response element binding protein (CREB) phosphorylated on Ser-133 is transcriptionally active upon its introduction into fibroblast nuclei. J. Biol. Chem. 269, 7623–7630 (1994).

    CAS  PubMed  Google Scholar 

  18. Watanabe, T. et al. Protein phosphatase 1 regulation by inhibitors and targeting subunits. Proc. Natl. Acad. Sci. USA 98, 3080–3085 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ceulemans, H., Stalmans, W. & Bollen, M. Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. Bioessays 24, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Cohen, P.T. Protein phosphatase 1 — targeted in many directions. J. Cell Sci. 115, 241–256 (2002).

    CAS  PubMed  Google Scholar 

  21. Michael, L.F., Asahara, H., Shulman, A.I., Kraus, W.L. & Montminy, M. The phosphorylation status of a cyclic AMP-responsive activator is modulated via a chromatin-dependent mechanism. Mol. Cell. Biol. 20, 1596–1603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taunton, J., Hassig, C.A. & Schreiber, S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Knoepfler, P.S. & Eisenman, R.N. Sin meets NuRD and other tails of repression. Cell 99, 447–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ayer, D.E., Laherty, C.D., Lawrence, Q.A., Armstrong, A.P. & Eisenman, R.N. Mad proteins contain a dominant transcription repression domain. Mol. Cell. Biol. 16, 5772–5781 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heinzel, T. et al. A Complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grozinger, C.M., Chao, E.D., Blackwell, H.E., Moazed, D. & Schreiber, S.L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276, 38837–38843 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Jameson, J.L., Jaffe, R.C., Gleason, S.L. & Habener, J.F. Transcriptional regulation of chorionic gonadotropin α- and β-subunit gene expression by 8-boromo-adenosine 3′,5′-monophosphate. Endocrinology 119, 2560–2567 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Delegeane, A.M., Ferland, L.H. & Mellon, P.L. Tissue-specific enhancer of the human glycoprotein hormone alpha subunit: dependence on cyclic AMP-inducible elements. Mol. Cell. Biol. 7, 3994–4002 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Sassone-Corsi, P. Coupling gene expression to cAMP signalling: role of CREB and CREM. Int. J. Biochem. Cell Biol. 30, 27–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Hassig, C.A. et al. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. USA 95, 3519–3524 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taplick, J. et al. Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J. Mol. Biol. 308, 27–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Lo, W.S. et al. Snf1 — a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293, 1142–1146 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–915 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hsu, J.Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21, 2672–2681 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrulis, E.D., Guzman, E., Doring, P., Werner, J. & Lis, J.T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14, 2635–2649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guzman, E. & Lis, J.T. Transcription factor TFIIH is required for promoter melting in vivo. Mol. Cell. Biol. 19, 5652–5658 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor–regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Gatlin, C.L., Kleemann, G.R., Hays, L.G., Link, A.J. & Yates, J.R. III Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal. Biochem. 263, 93–101 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Downes, W. Xu and R. Evans for the gift of HDAC expression plasmids and 3H-labeled histones. This work was supported by funds from the National Institutes of Health. G.C. was supported by a fellowship granted by Istituto Pasteur-Fondazione Cenci, Bolognetti, Italy. S.H. was supported by a grant from the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Montminy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canettieri, G., Morantte, I., Guzmán, E. et al. Attenuation of a phosphorylation-dependent activator by an HDAC–PP1 complex. Nat Struct Mol Biol 10, 175–181 (2003). https://doi.org/10.1038/nsb895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing