Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle

Abstract

p97 (also called VCP), a member of the AAA ATPase family, is involved in several cellular processes, including membrane fusion and extraction of proteins from the endoplasmic reticulum for cytoplasmic degradation. We have studied the conformational changes that p97 undergoes during the ATPase cycle by cryo-EM and single-particle analysis. Three-dimensional maps show that the two AAA domains, D1 and D2, as well as the N-domains, experience conformational changes during ATP binding, ATP hydrolysis, Pi release and ADP release. The N-domain is flexible in most nucleotide states except after ATP hydrolysis. The rings formed by D1 and D2 rotate with respect to each other, and the size of their axial openings fluctuates. Taken together, our results depict the movements that this and possibly other AAA ATPases can undergo during an ATPase cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p97 and ΔN-p97.
Figure 2: Structure of p97 in different nucleotide conditions.
Figure 3: Conformational changes of p97.
Figure 4: Stucture of ΔN-p97.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Peters, J., Walsh, M.J. & Franke, W.W. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J. 9, 1757–1767 (1990).

    Article  CAS  Google Scholar 

  2. Rabouille, C. et al. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92, 603–610 (1998).

    Article  CAS  Google Scholar 

  3. Roy, L. et al. Role of p97 and syntaxin-5 in the assembly of transitional endoplasmic reticulum. Mol. Biol. Cell 11, 2529–2542 (2000).

    Article  CAS  Google Scholar 

  4. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nature Cell Biol. 3, 1086–1091 (2001).

    Article  CAS  Google Scholar 

  5. Shirogane, T. et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11, 709–719 (1999).

    Article  CAS  Google Scholar 

  6. Madeo, F., Fröhlich, E. & Fröhlich, K. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734 (1997).

    Article  CAS  Google Scholar 

  7. Madeo, F., Schlauer, J., Zischka, H., Mecke, D. & Fröhlich, K. Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of cdc48p. Mol. Biol. Cell 9, 131–141 (1998).

    Article  CAS  Google Scholar 

  8. Yamada, T. et al. p97 ATPase, an ATPase involved in membrane fusion, interacts with DNA unwinding factor (DUF) that functions in DNA replication. FEBS Lett. 466, 287–291 (2000).

    Article  CAS  Google Scholar 

  9. Dai, R.M., Chen, E., Longo, D.L., Gorbea, C.M. & Li, C.H. Involvement of valosin-containing protein, an ATPase co-purified with IκBα and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IκBα. J. Biol. Chem. 273, 3562–3573 (1998).

    Article  CAS  Google Scholar 

  10. Meyer, H.H., Shorter, J.G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).

    Article  CAS  Google Scholar 

  11. Yen, C. et al. Involvement of the ubiquitin-proteasome pathway in the degradation of nontyrosine kinase-type cytokine receptors of IL-9, IL-2, and erythropoietin. J. Immunol. 165, 6372–6380 (2000).

    Article  CAS  Google Scholar 

  12. Dai, R.M. & Li, C.H. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nature Cell Biol. 3, 740–744 (2001).

    Article  CAS  Google Scholar 

  13. Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).

    Article  CAS  Google Scholar 

  14. Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. Role of the ubiquitin-selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 21, 615–621 (2002).

    Article  CAS  Google Scholar 

  15. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139 (2002).

    Article  CAS  Google Scholar 

  16. Rabinovich, E., Kerem, A., Fröhlich, K.U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22, 626–634 (2002).

    Article  CAS  Google Scholar 

  17. Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).

    Article  CAS  Google Scholar 

  18. Meyer, H.H., Kondo, H. & Warren, G. The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97. FEBS Lett. 437, 255–257 (1998).

    Article  CAS  Google Scholar 

  19. Koegl, M.T. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  Google Scholar 

  20. Ghislain, M., Dohmen, R.J., Lévy, F. & Varshavsky, A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 15, 4884–4899 (1996).

    Article  CAS  Google Scholar 

  21. Maurizi, M.R. & Li, C.H. AAA proteins: in search of a common molecular basis. International Meeting on Cellular Functions of AAA Proteins. EMBO Rep. 2, 980–985 (2001).

    Article  CAS  Google Scholar 

  22. Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell. Biol. 8, 65–71 (1998).

    Article  CAS  Google Scholar 

  23. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  Google Scholar 

  24. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure — diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  Google Scholar 

  25. Vale, R.D. AAA proteins. Lords of the ring. J. Cell Biol. 10, F13–19 (2000).

    Article  Google Scholar 

  26. Babor, S.M. & Fass, D. Crystal structure of the Sec18p N-terminal domain. Proc. Natl. Acad. Sci. USA 96, 14759–14764 (1999).

    Article  CAS  Google Scholar 

  27. Coles, M. et al. The solution structure of VAT-N reveals a 'missing link' in the evolution of complex enzymes from a simple βαββ element. Curr. Biol. 9, 1158–1168 (1999).

    Article  CAS  Google Scholar 

  28. May, A.P., Misura, K.M.S., Whiteheart, S.W. & Weis, W.I. Crystal structure of the N-terminal domain of N-ethylmaleimide-sensitive fusion protein. Nature Cell Biol. 1, 175–182 (1999).

    Article  CAS  Google Scholar 

  29. Yu, R.C., Jahn, R., & Brunger, A.T. NSF N-terminal domain crystal structure: models of NSF function. Mol. Cell 4, 97–107 (1999).

    Article  CAS  Google Scholar 

  30. Zhang X., et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).

    Article  CAS  Google Scholar 

  31. Peters, J. et al. Ubiquitous soluble Mg2+-ATPase complex. A structural study. J. Mol. Biol. 223, 557–571 (1992).

    Article  CAS  Google Scholar 

  32. Rockel, B. et al. Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography. FEBS Lett. 451, 27–32 (1999).

    Article  CAS  Google Scholar 

  33. Rouiller, I., Butel, V.M., Latterich, M., Milligan, R.A. & Wilson-Kubalek, E.M. A major conformational change in p97 AAA ATPase upon ATP binding. Mol. Cell 6, 1485–1490 (2000).

    Article  CAS  Google Scholar 

  34. Rockel, B., Jakana, J., Chiu, W. & Baumeister, W. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum. J. Mol. Biol. 317, 673–681 (2002).

    Article  CAS  Google Scholar 

  35. Lenzen, C.U., Steinmann, D., Whiteheart, S.W. & Weis, W.I. Crystal structure of the hexamerizatioN-domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998).

    Article  CAS  Google Scholar 

  36. Yu, R.C., Hanson, P.I., Jahn, R. & Brunger, A.T. Structure of the ATP-dependent oligomerizatioN-domain of N-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol. 5, 803–811 (1998).

    Article  CAS  Google Scholar 

  37. Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol. 7, R682–685 (1997).

    Article  CAS  Google Scholar 

  38. Putnam, C.D. et al. Structure and mechanism of the RuvB Holliday junction branch migration motor. J. Mol. Biol. 311, 297–310 (2001).

    Article  CAS  Google Scholar 

  39. Sousa, M.C. et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633–643 (2000).

    Article  CAS  Google Scholar 

  40. Bochtler, M., Song, H.K., Hartmann, C., Ramachandran, R. & Huber, R. The quaternary arrangement of HslU and HslV in a cocrystal: a response to Wang, Yale. J. Struct. Biol. 135, 281–293 (2001).

    Article  CAS  Google Scholar 

  41. Wang, J. A corrected quaternary arrangement of the peptidase HslV and ATPase HslU in a cocrystal structure. J. Struct. Biol. 134, 15–24 (2001).

    Article  CAS  Google Scholar 

  42. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107–1116 (2001).

    Article  CAS  Google Scholar 

  43. Lamb, J.R., Fu, V., Wirtz, E. & Bangs, J.D. Functional analysis of the trypanosomal AAA protein TbVCP with trans-dominant ATP hydrolysis mutants. J. Biol. Chem. 276, 21512–21520 (2001).

    Article  CAS  Google Scholar 

  44. Pamnani, V. et al. Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum. FEBS Lett. 404, 263–268 (1997).

    Article  CAS  Google Scholar 

  45. Frank, J. & Radermacher, M. SPIDER and WEB: processing and visualization of images in 3D EM and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  46. Sorzano, C.O.S. et al. The effect of overabundant projection directions on 3D reconstruction algorithms. J. Struct. Biol. 133, 108–118 (2001).

    Article  CAS  Google Scholar 

  47. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    Article  CAS  Google Scholar 

  48. Jones, T.A., Zou, J-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants to R.A.M., E.M.W.-K. and W.I.W. A.P.M. was funded by a Wellcome Trust Prize International Traveling Fellowship. We thank P. Chacon for doing the fitting with Situs47 and B. Sheehan for computing help. We also thank S. Kaiser, M. Bowen and C. Moores for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Wilson-Kubalek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouiller, I., DeLaBarre, B., May, A. et al. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat Struct Mol Biol 9, 950–957 (2002). https://doi.org/10.1038/nsb872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing