Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization

Abstract

The small family of polo-like kinases (Plks) includes Cdc5 from Saccharomyces cerevisiae, Plo1 from Schizosaccharomyces pombe, Polo from Drosophila melanogaster and the four mammalian genes Plk1, Prk/Fnk, Snk and Sak. These kinases control cell cycle progression through the regulation of centrosome maturation and separation, mitotic entry, metaphase to anaphase transition, mitotic exit and cytokinesis. Plks are characterized by an N-terminal Ser/Thr protein kinase domain and the presence of one or two C-terminal regions of similarity, termed the polo box motifs. These motifs have been demonstrated for Cdc5 and Plk1 to be required for mitotic progression and for subcellular localization to mitotic structures. Here we report the 2.0 Å crystal structure of a novel domain composed of the polo box motif of murine Sak. The structure consists of a dimeric fold with a deep interfacial cleft and pocket, suggestive of a ligand-binding site. We show that this domain forms homodimers both in vitro and in vivo, and localizes to centrosomes and the cleavage furrow during cytokinesis. The requirement of the polo domain for Plk family function and the unique physical properties of the domain identify it as an attractive target for inhibitor design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based sequence alignment of the Plk family polo domains.
Figure 2: Structure of the Sak polo domain dimer.
Figure 3: The polo domain of Sak can self-associate in vivo but Sak may use several mechanisms for self-association.
Figure 4: Subcellular localization of EGFP-fusion proteins demonstrate that the polo domain of Sak is sufficient for localization.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Donaldson, M.M., Tavares, A.A., Hagan, I.M., Nigg, E.A. & Glover, D.M. J. Cell Sci. 114, 2357–2358 (2001).

    CAS  PubMed  Google Scholar 

  2. Glover, D.M., Hagan, I.M. & Tavares, A.A. Genes Dev. 12, 3777–3787 (1998).

    Article  CAS  Google Scholar 

  3. Nigg, E.A. Curr. Opin. Cell Biol. 10, 776–783 (1998).

    Article  CAS  Google Scholar 

  4. Sunkel, C.E. & Glover, D.M. J. Cell. Sci. 89, 25–38 (1988).

    PubMed  Google Scholar 

  5. Carmena, M. et al. J. Cell Biol. 143, 659–671 (1998).

    Article  CAS  Google Scholar 

  6. Ohkura, H., Hagan, I.M. & Glover, D.M. Genes Dev. 9, 1059–1073 (1995).

    Article  CAS  Google Scholar 

  7. Simchen, G., Kassir, Y., Horesh-Cabilly, O. & Friedmann, A. Mol. Gen. Genet. 184, 46–51 (1981).

    Article  CAS  Google Scholar 

  8. Song, S. & Lee, K.S. J. Cell. Biol. 152, 451–469 (2001).

    Article  CAS  Google Scholar 

  9. Hudson, J.W. et al. Curr. Biol. 11, 441–446 (2001).

    Article  CAS  Google Scholar 

  10. Lee, K.S. & Erikson, R.L. Mol. Cell. Biol. 17, 3408–3417 (1997).

    Article  CAS  Google Scholar 

  11. Ouyang, B. et al. J. Biol. Chem. 272, 28646–28651 (1997).

    Article  CAS  Google Scholar 

  12. Golsteyn, R.M., Mundt, K.E., Fry, A.M. & Nigg, E.A. J. Cell Biol. 129, 1617–1628 (1995).

    Article  CAS  Google Scholar 

  13. Lee, K.S., Grenfell, T.Z., Yarm, F.R. & Erikson, R.L. Proc. Natl. Acad. Sci. USA 95, 9301–9306 (1998).

    Article  CAS  Google Scholar 

  14. Wang, Q. et al. Mol. Cell. Biol. 22, 3450–3459 (2002).

    Article  CAS  Google Scholar 

  15. Song, S., Grenfell, T.Z., Garfield, S., Erikson, R.L. & Lee, K.S. Mol. Cell. Biol. 20, 286–298 (2000).

    Article  CAS  Google Scholar 

  16. Mulvihill, D.P., Petersen, J., Ohkura, H., Glover, D.M. & Hagan, I.M. Mol. Biol. Cell 10, 2771–2785 (1999).

    Article  CAS  Google Scholar 

  17. Adams, R.R., Tavares, A.A., Salzberg, A., Bellen, H.J. & Glover, D.M. Genes Dev. 12, 1483–1494 (1998).

    Article  CAS  Google Scholar 

  18. Madej, T., Gibrat, J.F. & Bryant, S.H. Proteins 23, 356–369 (1995).

    Article  CAS  Google Scholar 

  19. Wheeler, D.L. et al. Nucleic Acids Res. 30, 13–16 (2002).

    Article  CAS  Google Scholar 

  20. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  Google Scholar 

  21. Falquet, L. et al. Nucleic Acids Res. 30, 235–238 (2002).

    Article  CAS  Google Scholar 

  22. Jang, Y.J., Lin, C.Y., Ma, S. & Erikson, R.L. Proc. Natl. Acad. Sci. USA 99, 1984–1989 (2002).

    Article  CAS  Google Scholar 

  23. Ho, Y. et al. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  24. Feng, Y. et al. Biochem. J. 339, 435–442 (1999).

    Article  CAS  Google Scholar 

  25. Hu, F. et al. Cell 107, 655–665 (2001).

    Article  CAS  Google Scholar 

  26. Bahler, J. et al. J. Cell Biol. 143, 1603–1616 (1998).

    Article  CAS  Google Scholar 

  27. Smits, V.A. et al. Nature Cell Biol. 2, 672–676 (2000).

    Article  CAS  Google Scholar 

  28. Simizu, S. & Osada, H. Nature Cell Biol. 2, 852–854 (2000).

    Article  CAS  Google Scholar 

  29. Wolf, G. et al. Oncogene 14, 543–549 (1997).

    Article  CAS  Google Scholar 

  30. Dietzmann, K., Kirches, E., von Bossanyi, P., Jachau, K. & Mawrin, C. J. Neurooncol. 53, 1–11 (2001).

    Article  CAS  Google Scholar 

  31. Tokumitsu, Y. et al. Int. J. Oncol. 15, 687–692 (1999).

    CAS  PubMed  Google Scholar 

  32. Knecht, R. et al. Cancer Res. 59, 2794–2797 (1999).

    CAS  PubMed  Google Scholar 

  33. Smith, M.R. et al. Biochem. Biophys. Res. Commun. 234, 397–405 (1997).

    Article  CAS  Google Scholar 

  34. Cogswell, J.P., Brown, C.E., Bisi, J.E. & Neill, S.D. Cell Growth Differ. 11, 615–623 (2000).

    CAS  PubMed  Google Scholar 

  35. Luo, Y. et al. Nature Struct. Biol. 8, 1031–1036 (2001).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. Brünger, A.T. et al. Acta. Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  38. de La Fortelle, E. & Bricogne, G. 6 Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  39. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta. Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  40. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallgr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  41. Carson, M. J. Appl. Crystallgr. 24, 958–961 (1991).

    Article  Google Scholar 

  42. Nicholls, A., Sharp, K.A. & Honig, B. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Blasutig, S.H. Ong, S. Oster, L. Harrington, D. Durocher and P. Plant for helpful discussion and assistance with the coimmunoprecipitation experiments, and P. Taylor and B. Larsen for instruction on mass spectrometry. We also thank the BioCars and Structural Biology Centre staff at the Advanced Photon Source at Argonne National Laboratories, where diffraction data were collected. This work was supported by grants from the National Cancer Institute of Canada to F.S. and J.D. F.S. is a recipient of a National Cancer Institute of Canada Scientist award. G.C.L is a recipient of a Natural Sciences and Engineering Research Council of Canada award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sicheri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, G., Hudson, J., Kozarova, A. et al. The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat Struct Mol Biol 9, 719–724 (2002). https://doi.org/10.1038/nsb848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing