Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM

Abstract

MutM is a bacterial 8-oxoguanine glycosylase responsible for initiating base-excision repair of oxidized guanine residues in DNA. Here we report five different crystal structures of MutM–DNA complexes that represent different steps of the repair reaction cascade catalyzed by the protein and also differ in the identity of the base opposite the lesion (the 'estranged' base). These structures reveal that the MutM active site performs the multiple steps of base-excision and 3′ and 5′ nicking with minimal rearrangement of the DNA backbone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanistic scheme for the reaction cascade catalyzed by MutM.
Figure 2: Overall structure of the MutM–DNA complex (rAb·C).
Figure 3: Comparison of active sites from three different stages of catalysis.
Figure 4: Recognition of the estranged base by MutM.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  Google Scholar 

  2. Michaels, M.L. & Miller, J.H. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bacteriol. 174, 6321–6325 (1992).

    Article  CAS  Google Scholar 

  3. Grollman, A.P. & Moriya, M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9, 246–249 (1993).

    Article  CAS  Google Scholar 

  4. Friedberg, E.C., Walker, G.C. & Siede, W. DNA Repair and Mutagenesis (ASM Press, Washington, D.C.; 1995).

    Google Scholar 

  5. Tajiri, T., Maki, H. & Sekiguchi, M. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat. Res. 336, 257–267 (1995).

    Article  CAS  Google Scholar 

  6. van der Kemp, P.A., Thomas, D., Barbey, R., de Oliveira, R. & Boiteux, S. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc. Natl. Acad. Sci. USA 93, 5197–5202 (1996).

    Article  CAS  Google Scholar 

  7. Nash, H.M. et al. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 6, 968–980 (1996).

    Article  CAS  Google Scholar 

  8. Tchou, J. & Grollman, A.P. The catalytic mechanism of Fpg protein. Evidence for a Schiff base intermediate and amino terminus localization of the catalytic site. J. Biol. Chem. 270, 11671–11677 (1995).

    Article  CAS  Google Scholar 

  9. Zharkov, D.O., Rieger, R.A., Iden, C.R. & Grollman, A.P. NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein. J. Biol. Chem. 272, 5335–5341 (1997).

    Article  CAS  Google Scholar 

  10. Bhagwat, M. & Gerlt, J.A. 3′- and 5′-strand cleavage reactions catalyzed by the Fpg protein from Escherichia coli occur via successive β- and δ-elimination mechanisms, respectively. Biochemistry 35, 659–665 (1996).

    Article  CAS  Google Scholar 

  11. Sun, B., Latham, K.A., Dodson, M.L. & Lloyd, R.S. Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates. J. Biol. Chem. 270, 19501–19508 (1995).

    Article  CAS  Google Scholar 

  12. Tchou, J. et al. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. J. Biol. Chem. 269, 15318–15324 (1994).

    CAS  PubMed  Google Scholar 

  13. Boiteux, S., O'Connor, T.R., Lederer, F., Gouyette, A. & Laval, J. Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 265, 3916–3922 (1990).

    CAS  PubMed  Google Scholar 

  14. O'Connor, T.R., Boiteux, S. & Laval, J. Repair of imidazole ring-opened purines in DNA: overproduction of the formamidopyrimidine-DNA glycosylase of Escherichia coli using plasmids containing the fpg+ gene. Ann. Ist. Super. Sanita 25, 27–31 (1989).

    CAS  PubMed  Google Scholar 

  15. Tchou, J. et al. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci. USA 88, 4690–4694 (1991).

    Article  CAS  Google Scholar 

  16. Hatahet, Z., Kow, Y.W., Purmal, A.A., Cunningham, R.P. & Wallace, S.S. New substrates for old enzymes. 5-Hydroxy-2′-deoxycytidine and 5-hydroxy-2′-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2′-deoxyuridine is a substrate for uracil DNA N-glycosylase. J. Biol. Chem. 269, 18814–18820 (1994).

    CAS  PubMed  Google Scholar 

  17. Bruner, S.D., Norman, D.P. & Verdine, G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000).

    Article  CAS  Google Scholar 

  18. Norman, D.P.G., Bruner, S.D. & Verdine, G.L. Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein. J. Am. Chem. Soc. 123, 359–360 (2001).

    Article  CAS  Google Scholar 

  19. Boiteux, S., O'Connor, T.R. & Laval, J. Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein. Embo J. 6, 3177–3183 (1987).

    Article  CAS  Google Scholar 

  20. Michaels, M.L., Pham, L., Cruz, C. & Miller, J.H. MutM, a protein that prevents G-C–T-A transversions, is formamidopyrimidine-DNA glycosylase. Nucleic Acids Res. 19, 3629–3632 (1991).

    Article  CAS  Google Scholar 

  21. Sugahara, M. et al. Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8. EMBO J. 19, 3857–3869 (2000).

    Article  CAS  Google Scholar 

  22. Zharkov, D.O. et al. Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate. Embo J. 21, 789–800 (2002).

    Article  CAS  Google Scholar 

  23. Castaing, B., Boiteux, S. & Zelwer, C. DNA containing a chemically reduced apurinic site is a high affinity ligand for the E.coli formamidopyrimidine-DNA glycosylase. Nucleic Acids Res. 20, 389–394 (1992).

    Article  CAS  Google Scholar 

  24. Tchou, J., Michaels, M.L., Miller, J.H. & Grollman, A.P. Function of the zinc finger in Escherichia coli Fpg protein. J. Biol. Chem. 268, 26738–26744 (1993).

    CAS  PubMed  Google Scholar 

  25. Sidorkina, O.M. & Laval, J. Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein). Nucleic Acids Res. 26, 5351–5357 (1998).

    Article  CAS  Google Scholar 

  26. Saparbaev, M. et al. Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: different roles of proline 2 and lysine 57 residues. Environ. Mol. Mutagen. 39, 10–17 (2002).

    Article  CAS  Google Scholar 

  27. Eschenmoser, A. & Dobler, M. Why pentose and not hexose nucleic acids? Part I. Helv. Chim. Acta 75, 218–259 (1992).

    Article  CAS  Google Scholar 

  28. Plum, G.E., Grollman, A.P., Johnson, F. & Breslauer, K.J. Influence of the oxidatively damaged adduct 8-oxodeoxyguanosine on the conformation, energetics, and thermodynamic stability of a DNA duplex. Biochemistry 34, 16148–16160 (1995).

    Article  CAS  Google Scholar 

  29. Sidorkina, O.M. & Laval, J. Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein. J. Biol. Chem. 275, 9924–9929 (2000).

    Article  CAS  Google Scholar 

  30. Guan, Y. et al. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nature Struct. Biol. 5, 1058–1064 (1998).

    Article  CAS  Google Scholar 

  31. Kuo, C.F. et al. Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science 258, 434–440 (1992).

    Article  CAS  Google Scholar 

  32. Hollis, T., Ichikawa, Y. & Ellenberger, T. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase. Escherichia coli AlkA. Embo J. 19, 758–766 (2000).

    CAS  PubMed  Google Scholar 

  33. Bjoras, M., Seeberg, E., Luna, L., Pearl, L.H. & Barrett, T.E. Reciprocal 'flipping' underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase. J. Mol. Biol. 317, 171–177 (2002).

    Article  CAS  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1996).

    Article  Google Scholar 

  35. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  36. Brünger, A.T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. D 49, 24–36 (1993).

    Article  Google Scholar 

  37. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42 140–149 (1986).

    Article  Google Scholar 

  38. Laskowski, R.J., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

  39. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  40. Gilboa, R. et al. Structure of a formamidopyrimidine DNA glycosylase-DNA complex. J. Biol. Chem., 23 March 2002 (10.1074/jbc.M202058200).

Download references

Acknowledgements

We are grateful to B. Roe and S. Lewis of the OU Advanced Center for Genome Technology for their help with B. stearothermophilus. The entire staff of MacCHESS, especially C. Heaton and B. Miller, provided valuable assistance with data collection and processing. We thank M. Spong for assistance with the crystallization screens, and members of the Verdine, Harrison and Wiley labs for thoughtful discussions. J.C.F is funded by an NSF predoctoral fellowship and an NIH training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Verdine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromme, J., Verdine, G. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Nat Struct Mol Biol 9, 544–552 (2002). https://doi.org/10.1038/nsb809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb809

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing