Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational strain in the hydrophobic core and its implications for protein folding and design

Abstract

We have designed de novo 13 divergent spectrin SH3 core sequences to determine their folding properties. Kinetic analysis of the variants with stability similar to that of the wild type protein shows accelerated unfolding and refolding rates compatible with a preferential stabilization of the transition state. This is most likely caused by conformational strain in the native state, as deletion of a methyl group (Ile→Val) leads to deceleration in unfolding and increased stability (up to 2 kcal mol−1). Several of these Ile→Val mutants have negative φ‡−U values, indicating that some noncanonical φ‡−U values might result from conformational strain. Thus, producing a stable protein does not necessarily mean that the design process has been entirely successful. Strained interactions could have been introduced, and a reduction in the buried volume could result in a large increase in stability and a reduction in unfolding rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagram of the spectrin SH3 domain.
Figure 2: Rectangular cladograms for the hydrophobic core of 63 selected SH3 sequences and the designed hydrophobic core mutants.
Figure 3: Urea denaturation profiles of the WT and the 13 core mutants.
Figure 4: Folding and unfolding kinetic curves of the WT, spectrin SH3 and core mutants.
Figure 5: Stereo view of the omit map of the core residues.
Figure 6: Superimposition of the backbones corresponding to the WT and different core mutants.
Figure 7: Urea denaturation profiles of the WT-spectrin SH3 and core mutants.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. López de la Paz, M., Lacroix, E., Ramírez-Alvarado, M. & Serrano, L. De novo automatic design of β-sheet model peptides. J. Mol. Biol. 312, 229–246 (2001).

    Article  Google Scholar 

  2. Pokala, N. & Handel, T.M. Review: protein design — where we were, where we are, where we're going. J. Struct. Biol. 134, 269–281 (2001).

    Article  CAS  Google Scholar 

  3. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  Google Scholar 

  4. Oliveberg, M. Characterisation of the transition states for protein folding: towards a new level of mechanistic detail in protein engineering analysis. Curr. Opin. Struct. Biol. 11, 94–100 (2001).

    Article  CAS  Google Scholar 

  5. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. & Saraste, M. Crystal structure of a src-homology 3 (SH3) domain. Nature 359, 851–855 (1992).

    Article  CAS  Google Scholar 

  6. Viguera, A.R., Martinez, J.C., Filimonov, V.V., Mateo, P.L. & Serrano L. Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry 33, 2142–2150 (1994).

    Article  CAS  Google Scholar 

  7. Viguera, A.R., Jimenez, M.A., Rico, M. & Serrano, L. Conformational analysis of peptides corresponding to β-hairpins and a β-sheet, that represent the entire sequence of α-spectrin SH3-domain. J. Mol. Biol. 255, 507–521 (1995).

    Article  Google Scholar 

  8. Martinez, J.C. & Serrano, L. The folding transition-state between SH3 domains is conformationally restricted and evolutionarily conserved. Nature Struct. Biol. 6, 1010–1016 (1999).

    Article  CAS  Google Scholar 

  9. Pisabarro, M.T. & Serrano, L. Rational design of specific high-affinity peptide ligands for the Abl-SH3 domain. Biochemistry 35,10634–10640 (1996).

    Article  CAS  Google Scholar 

  10. Lacroix E. Protein Design: a Computer-based Approach. PhD thesis, Univ. Libre de Bruxelles (1999).

  11. Fisinger, S., Serrano, L. & Lacroix, E. Computational estimation of specific side chain interaction energies in α-helices. Protein Sci. 10, 809–818 (2001).

    Article  CAS  Google Scholar 

  12. Reina, J. et al. Computer-aided design of a PDZ domain to recognize new target sequences. Nature Struct. Biol. In the press (2002).

  13. Shortle, D., Strites, W.E. & Meeker, A.K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry 29, 8033–8041 (1990)

    Article  CAS  Google Scholar 

  14. Sandberg, W.S. & Terwilliger, T.C. Energetics of repacking of a protein interior. Proc. Natl. Acad. Sci. USA 88, 1706–1710 (1991).

    Article  CAS  Google Scholar 

  15. Serrano, L., Kellis, J., Cann, P., Matouschek, A. & Fersht, A.R. The folding of an enzyme II. J. Mol. Biol. 224, 783–804 (1992).

    Article  CAS  Google Scholar 

  16. Jackson, S.E., Moracci, M., elMasry, N., Johnson, C.M. & Fersht, A.R. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry 32, 11259–11269 (1993).

    Article  CAS  Google Scholar 

  17. Fersht, A.R. Characterizing transition states in protein folding: an essential step in the puzzle. Curr. Opin. Struct. Biol. 5, 79–84 (1995).

    Article  CAS  Google Scholar 

  18. Riddle, D.S. et al. Experiment and theory highlight role of native state topology in SH3 folding. Nature Struct. Biol. 6, 1016–1024 (1999).

    Article  CAS  Google Scholar 

  19. Viguera, A.R. Wilmanns, M. & Serrano, L. Different folding transition states could result in the some native structure. Nature Struct. Biol. 3, 874–880 (1996).

    Article  CAS  Google Scholar 

  20. Jackson, S.E., elMasry, N. & Fersht, A.R. Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: a critical test of the protein engineering method of analysis. Biochemistry 32, 11270–11278 (1993).

    Article  CAS  Google Scholar 

  21. Ladurner, A.G., Itzhaki, L.S. & Fersht, A.R. Strain in the folding nucleus of chymotrypsin inhibitor 2. Fold Des. 2, 363–368 (1997).

    Article  CAS  Google Scholar 

  22. Milla, M.E., Brown, B.M., Waldburger, C.D. & Sauer, R.T. P22 Arc repressor: transition state properties inferred from mutational effects on the rates of protein unfolding and refolding. Biochemistry 34, 13914–13919 (1995).

    Article  CAS  Google Scholar 

  23. Khorasanizadeh, S., Peters, I.D. & Roder, H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nature Struct. Biol. 3, 193–205 (1996).

    Article  CAS  Google Scholar 

  24. Desjarlais, J. & Handel, T. De novo design of the hydrophobic cores of proteins. Protein Sci. 10, 2006–2018 (1995).

    Article  Google Scholar 

  25. Munson, M., O'Brien, R., Sturtevant, J.M. & Regan, L. Redesigning the hydrophobic core of a four-helix bundle protein. Protein Sci. 3, 2025–2022 (1994).

    Article  Google Scholar 

  26. Dahiyat, B.I. & Mayo, S.L. Probing the role of packing specificity in protein design. Proc. Natl Acad. Sci. USA 94, 10172–10177 (1997).

    Article  CAS  Google Scholar 

  27. Lazar, G.A. et al. De novo design of the hydrophobic core of ubiquitin. Protein Sci. 6, 1167–1178 (1997).

    Article  CAS  Google Scholar 

  28. Desjarlais, J.R. & Handel, T.M. Side-chain and backbone flexibility in protein core design. J. Mol. Biol. 290, 305–318 (1999).

    Article  CAS  Google Scholar 

  29. Ross, S.A. et al. Designed protein G core variants fold to native-like structures: sequence selection by ORBIT tolerates variation in backbone specification. Protein Sci. 10, 450–454 (2001).

    Article  CAS  Google Scholar 

  30. Gordon, D.B., Marshall, S.A. & Mayo, S.L. Energy functions for protein design. Curr. Opin. Struct. Biol. 9, 509–513 (1999).

    Article  CAS  Google Scholar 

  31. Maiorov, V. & Abagyan, R. Energy strain in three-dimensional protein structures. Fold Des. 3, 259–269 (1998).

    Article  CAS  Google Scholar 

  32. He, X.L. et al. Crystal structures of two α-like scorpion toxins: non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel. J. Mol. Biol. 292, 125–135 (1999).

    Article  CAS  Google Scholar 

  33. Vega, M.C., Martinez, J.C. & Serrano, L. Thermodynamic and structural characterization of Asn and Ala residues in the disallowed II′ region of the Ramachandran plot. Protein Sci. 9, 2322–2328 (2000).

    Article  CAS  Google Scholar 

  34. Goldenberg, D.P. Finding the right fold. Nature Struct. Biol. 6, 987–990 (1999).

    Article  CAS  Google Scholar 

  35. Ozkan, S.B., Bahar, I. & Dill, K.A. Transition states and the meaning of Phi-values in protein folding kinetics. Nature Struct. Biol. 8, 765–769 (2001).

    Article  CAS  Google Scholar 

  36. Northey, J.G.B., DiNardo, A.A. & Davidson, A.R. Hydrophobic core packing in the SH3 domain folding transition state. Nature Struct. Biol. 9, 126–130 (2002).

    Article  CAS  Google Scholar 

  37. Otwinosky, Z. Proceedings of the CCP4 Study weekend (Daresbury Laboratory, UK; 1993).

  38. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  39. Brünger, A.T. Free R-value: a novel statistical quantity for assessing of crystal structure. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  40. Nemethy, G., Pottle, M.S. & Scheraga, H.A. Updating of geometrical parameters, nonbonded interactions and hydrogen bond interactions for the naturally occurring amino acids. J. Phys. Chem. 87, 1883–1887 (1983).

    Article  CAS  Google Scholar 

  41. Koehl, P. & Delarue, M.A. A self consistent mean field approach to simultaneous gap closure and side chain positioning in homology modelling. Nature Struct. Biol. 2, 163–170 (1995).

    Article  CAS  Google Scholar 

  42. Street, A.G. & Mayo, S.L. (1998). Pairwise calculation of protein solvent-accessible surface areas. Folding & Design 3, 253–258.

    Article  CAS  Google Scholar 

  43. Eisenberg, D. & McLachlan, A.D. Solvation energy in protein folding and binding. Nature 319, 199–203 (1986).

    Article  CAS  Google Scholar 

  44. Thompson J.D., Higgins D.G. & Gibson T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  45. Larson, S.M., Di Nardo, A.A. & Davidson, A.R. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. J. Mol. Biol. 303, 433–436.

  46. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882 (1997).

    Article  Google Scholar 

  47. Schultz, J., Milpetz, F., Bork, P. & Ponting C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  Google Scholar 

  48. Filimonov, V.V., Azuaga, A.I., Viguera, A.R., Serrano, L. & Mateo, P.L. A thermodynamic analysis of a family of small globular proteins: SH3 domains. Biophys. Chem. 77, 195–208 (1999).

    Article  CAS  Google Scholar 

  49. Rath, A. & Davidson, A.R. The design of a hyperstable mutant of the Abp1p SH3 domain by sequence alignment analysis. Protein Sci. 9, 2457–2469 (2000).

    Article  CAS  Google Scholar 

  50. Chen, Y.J. et al. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Proteins 26, 465–471 (1996).

    Article  CAS  Google Scholar 

  51. Lim, W.A., Fox, R.O. & Richards, F.M. Stability and peptide binding affinity of an SH3 domain from the Caenorhabditis elegans signaling protein Sem-5. Protein Sci. 3, 1261–1266 (1994).

    Article  CAS  Google Scholar 

  52. Zhang, O., Kay, L.E., Olivier, J.P. & Forman-Kay, J.D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4, 845–858 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. Vega was supported by a Marie Curie fellowship. This work was partly supported by an EU Biotech grant. We are very grateful to M. DelaPaz for her critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Serrano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, S., Cristina Vega, M., Lacroix, E. et al. Conformational strain in the hydrophobic core and its implications for protein folding and design. Nat Struct Mol Biol 9, 485–493 (2002). https://doi.org/10.1038/nsb799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing