Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cytotoxic domain of colicin E9 is a channel-forming endonuclease

Abstract

Bacterial toxins commonly translocate cytotoxic enzymes into cells using channel-forming subunits or domains as conduits. Here we demonstrate that the small cytotoxic endonuclease domain from the bacterial toxin colicin E9 (E9 DNase) shows nonvoltage-gated, channel-forming activity in planar lipid bilayers that is linked to toxin translocation into cells. A disulfide bond engineered into the DNase abolished channel activity and colicin toxicity but left endonuclease activity unaffected; NMR experiments suggest decreased conformational flexibility as the likely reason for these alterations. Concomitant with the reduction of the disulfide bond is the restoration of conformational flexibility, DNase channel activity and colicin toxicity. Our data suggest that endonuclease domains of colicins may mediate their own translocation across the bacterial inner membrane through an intrinsic channel activity that is dependent on structural plasticity in the protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Planar lipid bilayer experiments with colicin E9.
Figure 2: Characteristics of E9 DNase channels.
Figure 3: E9 DNase channels at higher protein concentration.
Figure 4: Engineering a disulfide bond into the E9 DNase.
Figure 5: Effect of disulfide bond on E9 DNase channel activity.
Figure 6: 1H-15N HSQC spectra of E9 DNaseS–S and E9 DNaseSH2.
Figure 7: Antibacterial activity of oxidized and reduced colicin E9.

Similar content being viewed by others

References

  1. Johnson, A.E. & van Waes, M.A. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799–842 (1999).

    Article  Google Scholar 

  2. Manting, E.H. & Driessen, A.J.M. Escherichia coli translocase: the unravelling of a molecular machine. Mol. Microbiol. 37, 226–238 (2000).

    Article  CAS  Google Scholar 

  3. Berks, B.C., Sargent, F. & Palmer, T. The Tat protein export pathway. Mol. Microbiol. 35, 260–274 (2000).

    Article  CAS  Google Scholar 

  4. Koehler, T.M. & Collier, R.J. Anthrax toxin protective antigen — low pH-induced hydrophobicity and channel formation in liposomes. Mol. Microbiol. 5, 1501–1506 (1991).

    Article  CAS  Google Scholar 

  5. James, R., Lazdunski, C. & Pattus, F. Bacteriocins, Microcins and Lantibiotics (NATO ASI Series H, Springer, Heidelberg; 1992)

    Book  Google Scholar 

  6. Lazdunski, C.J. et al. Colicin import into Escherichia coli cells. J. Bacteriol. 180, 4993–5002 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schein, S.J., Kagan, B.L. & Finkelstein, A. Colicin K acts by forming voltage-dependent channels in phopholipid bilayer membranes. Nature 276, 159–163 (1978).

    Article  CAS  Google Scholar 

  8. Cramer, W.A. et al. Structure-function of the channel-forming colicins. Annu. Rev. Biophys. Biomol. Struct. 24, 611–641 (1995).

    Article  CAS  Google Scholar 

  9. Gouaux, E. The long and short of colicin action: the molecular basis for the biological activity of channel-forming colicins. Structure 5, 313–317 (1997).

    Article  CAS  Google Scholar 

  10. Webster, R.E. The tol gene products and the import of macromolecules into Escherichia coli cells. Mol. Microbiol. 5, 1005–1001 (1991).

    Article  CAS  Google Scholar 

  11. James, R., Kleanthous, C. & Moore, J.R. The biology of E colicins: paradigms and paradoxes. Microbiology 142, 1569–1580 (1996).

    Article  CAS  Google Scholar 

  12. Pommer, A.J., Wallis, R., Moore, R., James, R. & Kleanthous, C. Enzymological characterization of the nuclease domain from the bacterial toxin colicin E9. Biochem. J. 334, 387–392 (1998).

    Article  CAS  Google Scholar 

  13. Oh, J.K., Senzel, L., Collier, R.J. & Finkelstein, A. Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc. Natl. Acad. Sci. USA 96, 8467–8470 (1999).

    Article  CAS  Google Scholar 

  14. Wallis, R. et al. In vivo and in vitro characterization of overproduced colicin E9 immunity protein. Eur. J. Biochem. 207, 687–695 (1992).

    Article  CAS  Google Scholar 

  15. Kleanthous, C. & Walker, D. Immunity proteins: enzyme inhibitors that avoid the active site. Trends Biochem. Sci. 26, 624–631 (2001).

    Article  CAS  Google Scholar 

  16. Penfold, C.N. et al. A 76 residue polypeptide of colicin E9 confers receptor specificity and inhibits the growth of vitamin B12-dependent E. coli 113/3 cells. Mol. Microbiol. 38, 639–649 (2000).

    Article  CAS  Google Scholar 

  17. Wallis, R. et al. Tandem overexpression and characterization of the nuclease domain of colicin E9 and its cognate inhibitor protein Im9. Eur. J. Biochem. 220, 447–454 (1994).

    Article  CAS  Google Scholar 

  18. Slatin, S.L., Nardi, A., Jakes, K., Baty, D. & Duché, D. Translocation of a functional protein by a voltage-dependent ion channel. Proc. Natl. Acad. Sci. USA 99, 1286–1291 (2002).

    Article  CAS  Google Scholar 

  19. Jakes, K.S., Kienker, P.K. & Finkelstein, A. Channel-forming colicins: translocation (and other deviant behaviour) associated with colicin Ia channel gating. Q. Rev. Biophys. 32, 189–205 (1999).

    Article  CAS  Google Scholar 

  20. Raymond, L., Slatin, S.L. & Finkelstein, A. Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent selectivity. J. Membr. Biol. 84, 173–181 (1985).

    Article  CAS  Google Scholar 

  21. Bullock, J.O. & Kolen, E.R. Ion selectivity of colicin E1. J. Membr. Biol. 144, 131–145 (1995).

    Article  CAS  Google Scholar 

  22. Kadner, R.J. In Escherichia coli and Salmonella; Cellular and Molecular Biology 2nd edn Vol. 1 (ed. Neidhardt, F.C.) 58–87 (ASM Press, Washington; 1996).

    Google Scholar 

  23. Kleanthous, C. et al. Structural and mechanistic basis of immunity towards endonuclease colicins. Nature Struct. Biol. 6, 243–252 (1999).

    Article  CAS  Google Scholar 

  24. Pommer, A.J. et al. Homing-in on the role of transition metals in the HNH motif of colicin endonucleases. J. Biol. Chem. 274, 27153–27160 (1999).

    Article  CAS  Google Scholar 

  25. Wallis, R., Moore, G.R., James, R. & Kleanthous, C. Protein-protein interactions in colicin E9 DNase-immunity protein complexes. Diffusion-controlled association and femtomolar binding for the cognate complex. Biochemistry 34, 13743–13750 (1995).

    Article  CAS  Google Scholar 

  26. Pommer, A.J. et al. Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9. J. Mol. Biol. 314, 735–749 (2001).

    Article  CAS  Google Scholar 

  27. Falnes, P.Ø., Choe, S., Madshus, I.H., Wilson, B.A. & Olnes, S. Inhibition of membrane translocation of diphtheria toxin A fragment by internal disulfide bridges. J. Biol. Chem. 269, 8402–8407 (1994).

    CAS  PubMed  Google Scholar 

  28. Duché, D., Parker, M.W., González-Mañas, J-M., Pattus, F. & Baty, D. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. J. Biol. Chem. 269, 6332–6339 (1994).

    PubMed  Google Scholar 

  29. Kühlmann, U.C., Pommer, A.J., Moore, G.R., James, R., & Kleanthous, C. Specificity in protein-protein interactions: The structural basis for dual recognition in colicin endonuclease-immunity protein complexes. J. Mol. Biol. 301, 1163–1178 (2000).

    Article  Google Scholar 

  30. Whittaker, S.B.M. et al. NMR detection of slow conformational dynamics in an endonuclease toxin. J. Biomol. NMR 12, 145–159 (1998).

    Article  CAS  Google Scholar 

  31. Wallis, R. et al. Protein-protein interactions in colicin E9 DNase-immunity protein complexes. Cognate and noncognate interactions that span the mM-fM affinity range. Biochemistry 34, 13751–13759 (1995).

    Article  CAS  Google Scholar 

  32. Garinot-Schneider, C., Pommer, A.J., Moore, G.R., Kleanthous, C. & James, R. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis. J. Mol. Biol. 260, 731–742 (1996).

    Article  CAS  Google Scholar 

  33. Lacy, B.D. & Stevens, R.C. Unraveling the structures and modes of action of bacterial toxins. Curr. Opin. Struct. Biol. 8, 778–784 (1998).

    Article  CAS  Google Scholar 

  34. Falnes, P.Ø. & Sandvig, K. Penetration of protein toxins into cells. Curr. Opin. Cell Biol. 12, 407–413 (2000).

    Article  CAS  Google Scholar 

  35. Chevalier, B.S. & Stoddard, B.L. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 29, 3757–3774 (2001).

    Article  CAS  Google Scholar 

  36. van der Goot, F.G, González-Mañas, J.M., Lakey, J.H. & Pattus, F. A 'molten-globule' membrane insertion intermediate of the pore-forming domain of colicin A. Nature 354, 408–410 (1991).

    Article  CAS  Google Scholar 

  37. Zakharov, S.D. et al. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Proc. Natl. Acad. Sci. USA 95, 4282–4287 (1998).

    Article  CAS  Google Scholar 

  38. Slatin, S.L., Qiu, X-Q., Jakes, K.S., & Finkelstein, A. Identification of a translocated protein segment in a voltage-dependent channel. Nature 371, 158–161 (1998).

    Article  Google Scholar 

  39. de Zamaroczy, M., Mora, L., Lecuyer, A., Géli, V. & Buckingham, R.H. Cleavage of colicin D is necessary for cell killing and requires the inner membrane peptidase LepB. Mol. Cell 8, 159–168 (2001).

    Article  CAS  Google Scholar 

  40. Liao, C.C., Hsiao, K.C., Liu, Y.W., Leng, P.H. & Chak, K-F. Processing of DNase domain during translocation of colicin E7 across the membrane of Escherichia coli. Biochem. Biophys. Res. Commun. 284, 556–562 (2001).

    Article  CAS  Google Scholar 

  41. Soelaiman, S., Jakes, K., Wu, N., Li, W. & Shoham, M. Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol. Cell 8, 1053–1062 (2001).

    Article  CAS  Google Scholar 

  42. Montal, M. & Muller, P. Formation of bimolecular membranes from monolayers and study of their properties. Proc. Natl. Acad. Sci. USA 69, 3561–3566 (1972).

    Article  CAS  Google Scholar 

  43. Bishop, N.D. & Lea, E.J.A. Characterization of the porin of Rhodobacter capsulatus 37b4 in planar lipid bilayers. FEBS Lett. 349, 69–74 (1994).

    Article  CAS  Google Scholar 

  44. Bishop, N.D., Lea, E.J.A., Mobasheri, H. & Spiro, S. Altered voltage sensitivity of mutant OmpC porin channels. FEBS Lett 379, 295–298 (1996).

    Article  CAS  Google Scholar 

  45. Dempster, J. Single-channel analysis program PAT V7.0 PhD. thesis, Univ. of Strathclyde, Glasgow (1993).

    Google Scholar 

  46. Baldwin, G.S., Vipond, I.B. & Halford, S.E. Rapid reaction analysis of the catalytic cycle of the EcoRV restriction endonuclease. Biochemistry 34, 705–714 (1995).

    Article  CAS  Google Scholar 

  47. Boetzel, R. et al. Assignment of 1H, 13C and 15N signals of the inhibitor protein Im9 bound to the DNase domain of colicin E9. J. Biomol. NMR 12, 567–568 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Reilly, C. Moore and N. Cull for expert technical assistance and A. Leech for help with the acquisition of all mass spectrometry data. We also thank the referees of this paper for their helpful comments. This work was supported by The Biotechnology and Biological Sciences Research Council. A.H.K. was supported by a Wellcome Trust Prize Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Kleanthous.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosbahi, K., Lemaître, C., Keeble, A. et al. The cytotoxic domain of colicin E9 is a channel-forming endonuclease. Nat Struct Mol Biol 9, 476–484 (2002). https://doi.org/10.1038/nsb797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing