Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the selective activation of Rho GTPases by Dbl exchange factors

Abstract

Activation of Rho-family GTPases involves the removal of bound GDP and the subsequent loading of GTP, all catalyzed by guanine nucleotide exchange factors (GEFs) of the Dbl-family. Despite high sequence conservation among Rho GTPases, Dbl proteins possess a wide spectrum of discriminatory potentials for Rho-family members. To rationalize this specificity, we have determined crystal structures of the conserved, catalytic fragments (Dbl and pleckstrin homology domains) of the exchange factors intersectin and Dbs in complex with their cognate GTPases, Cdc42 and RhoA, respectively. Structure-based mutagenesis of intersectin and Dbs reveals the key determinants responsible for promoting exchange activity in Cdc42, Rac1 and RhoA. These findings provide critical insight into the structural features necessary for the proper pairing of Dbl-exchange factors with Rho GTPases and now allow for the detailed manipulation of signaling pathways mediated by these oncoproteins in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structures of ITSN–Cdc42 and Dbs–RhoA.
Figure 2: Residues in Rho GTPases and Rho–GEFs that dictate specificity.
Figure 3: Structural elements of ITSN that prevent nucleotide exchange in Rac1 and RhoA.
Figure 4: Specific substitutions in exchange factors alter selectivity for Rho GTPase substrates.
Figure 5: Comparison of the Dbs–RhoA, Dbs–Cdc42 and Tiam1–Rac1 structures.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Whitehead, I.P., Campbell, S., Rossman, K.L. & Der, C.J. Dbl family proteins. Biochim. Biophys. Acta 1332, 1–23 (1997).

    Google Scholar 

  2. Cerione, R.A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8, 216–222 (1996).

    Article  CAS  Google Scholar 

  3. Eva, A. & Aaronson, S.A. Isolation of a new human oncogene from a diffuse B-cell lymphoma. Nature 316, 273–275 (1985).

    Article  CAS  Google Scholar 

  4. Michiels, F., Habets, G.G., Stam, J.C., van der Kammen, R.A. & Collard, J.G. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338–340 (1995).

    Article  CAS  Google Scholar 

  5. del Peso, L. et al. Rho proteins induce metastatic properties in vivo. Oncogene 15, 3047–3057 (1997).

    Article  CAS  Google Scholar 

  6. Hoffman, G.R. & Cerione, R.A. Signaling to the Rho GTPases: networking with the DH domain. FEBS Lett. 513, 85–91 (2002).

    Article  CAS  Google Scholar 

  7. Worthylake, D., Rossman, K. & Sondek, J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408, 682–688 (2000).

    Article  CAS  Google Scholar 

  8. Rossman, K.L. et al. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J. 21, 1315–1326 (2002).

    Article  CAS  Google Scholar 

  9. Zheng, Y., Zangrilli, D., Cerione, R.A. & Eva, A. The pleckstrin homology domain mediates transformation by oncogenic dbl through specific intracellular targeting. J. Biol. Chem. 271, 19017–19020 (1996).

    Article  CAS  Google Scholar 

  10. Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279, 558–560 (1998).

    Article  CAS  Google Scholar 

  11. Hussain, N.K. et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nature Cell Biol. 3, 927–932 (2001).

    Article  CAS  Google Scholar 

  12. O'Bryan, J.P., Mohney, R.P. & Oldham, C.E. Mitogenesis and endocytosis: what's at the INTERSECTIoN? Oncogene 20, 6300–6308 (2001).

    Article  CAS  Google Scholar 

  13. Whitehead, I.P. et al. Dependence of Dbl and Dbs transformation on MEK and NF-κB activation. Mol. Cell Biol. 19, 7759–7770 (1999).

    Article  CAS  Google Scholar 

  14. Zheng, Y., Hart, M.J. & Cerione, R.A. Guanine nucleotide exchange catalyzed by dbl oncogene product. Methods Enzymol. 256, 77–84 (1995).

    Article  CAS  Google Scholar 

  15. Abe, K. et al. Vav2 is an activator of Cdc42, Rac1, and RhoA. J. Biol. Chem. 275, 10141–10149 (2000).

    Article  CAS  Google Scholar 

  16. Mosteller, R., Han, J., Das, B. & Broek, D. Biochemical analysis of regulation of Vav, a guanine-nucleotide exchange factor for Rho family of GTPases. Methods Enzymol. 325, 38–51 (2000).

    Article  CAS  Google Scholar 

  17. Bishop, A.L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    Article  CAS  Google Scholar 

  18. Hall, A. Signal transduction pathways regulated by the Rho family of small GTPases. Br. J. Cancer 80, 25–27 (1999).

    Article  CAS  Google Scholar 

  19. Lemmon, M.A. & Ferguson, K.M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350, 1–18 (2000).

    Article  CAS  Google Scholar 

  20. Rossman, K.L. & Campbell, S.L. Bacterial expressed DH and DH/PH domains. Methods Enzymol. 325, 25–38 (2000).

    Article  CAS  Google Scholar 

  21. Karnoub, A.E. et al. Molecular basis for Rac1 recognition by guanine nucleotide exchange factors. Nature Struct. Biol. 8, 1037–1041 (2001).

    Article  CAS  Google Scholar 

  22. Gao, Y., Xing, J., Streuli, M., Leto, T.L. & Zheng, Y. Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors. J. Biol. Chem. 276, 47530–47541 (2001).

    Article  CAS  Google Scholar 

  23. Snyder, J.T. et al. Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins. J. Biol. Chem. 276, 45868–45875 (2001).

    Article  CAS  Google Scholar 

  24. Zheng, Y., Cerione, R. & Bender, A. Control of the yeast bud-site assembly GTPase Cdc42. Catalysis of guanine nucleotide exchange by Cdc24 and stimulation of GTPase activity by Bem3. J. Biol. Chem. 269, 2369–2372 (1994).

    CAS  PubMed  Google Scholar 

  25. Doublie, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  CAS  Google Scholar 

  26. Ramakrishnan, V. & Biou, V. Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. Methods Enzymol. 276, 538–557 (1997).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, V. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Sheldrick, G.M. SHELXS86 — Program for crystal structural solution. (University of Gottingen, Germany; 1986).

    Google Scholar 

  29. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  30. Cowtan, K. & Main, P. Miscellaneous algorithms for density modification. Acta Crystallogr. D 54, 487–493 (1998).

    Article  CAS  Google Scholar 

  31. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  32. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  33. Read, R.J., Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  34. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  35. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thrornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  36. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

  38. Debant, A. et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl. Acad. Sci. USA 93, 5466–5471 (1996).

    Article  CAS  Google Scholar 

  39. Reuther, G.W. et al. Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA. J. Biol. Chem. 276, 27145–27151 (2001).

    Article  CAS  Google Scholar 

  40. Zheng, Y. et al. The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J. Biol. Chem. 271, 33169–33172 (1996).

    Article  CAS  Google Scholar 

  41. Steven, R. et al. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785–795 (1998).

    Article  CAS  Google Scholar 

  42. Reid, T., Bathoorn, A., Ahmadian, M.R. & Collard, J.G. Identification and characterization of hPEM-2, a guanine nucleotide exchange factor specific for Cdc42. J. Biol. Chem. 274, 33587–33593 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kimple, C. Ogata and the staff of X4a at the Brookhaven National Light Source and F. Rotello and the staff of BM19 at the Advanced Photon Source for assistance with data collection. D.K.W. is supported by a grant from the American Cancer Society, and J.S. acknowledges support from the NIH and the Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Sondek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, J., Worthylake, D., Rossman, K. et al. Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nat Struct Mol Biol 9, 468–475 (2002). https://doi.org/10.1038/nsb796

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing