Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Understanding protein hydrogen bond formation with kinetic H/D amide isotope effects

Abstract

Through the development of a procedure to measure when hydrogen bonds form under two-state folding conditions, α-helices have been determined to form proportionally to denaturant-sensitive surface area buried in the transition state. Previous experiments assessing H/D isotope effects are applied to various model proteins, including λ and Arc repressor variants, a coiled coil domain, cytochrome c, colicin immunity protein 7, proteins L and G, acylphosphatase, chymotrypsin inhibitor II and a Src SH3 domain. The change in free energy accompanied by backbone deuteration is highly correlated to secondary structure composition when hydrogen bonds are divided into two classes. The number of helical hydrogen bonds correlates with an average equilibrium isotope effect of 8.6 ± 0.9 cal mol−1 site−1. However, β-sheet and long-range hydrogen bonds have little isotope effect. The kinetic isotope effects support our hypothesis that, for helical proteins, hydrophobic association cannot be separated from helix formation in the transition state. Therefore, folding models that describe an incremental build-up of structure in which hydrophobic burial and hydrogen bond formation occur commensurately are more consistent with the data than are models that posit the extensive formation of one quantity before the other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isotope effects and model systems.
Figure 2: Folding kinetic isotope effects.
Figure 3: Correlating equilibrium isotope effects, kinetics and surface burial.

Similar content being viewed by others

References

  1. Northrop, D.B. Annu. Rev. Biochem. 50, 103–131 (1981).

    Article  CAS  Google Scholar 

  2. Schowen, K.B. & Schowen, R.L. Methods Enzymol. 87, 551–606 (1982).

    Article  CAS  Google Scholar 

  3. Cleland, W.W. Methods Enzymol. 249, 341–373 (1995).

    Article  CAS  Google Scholar 

  4. Itzhaki, L.S. & Evans, P.A. Protein Sci. 5, 140–146 (1996).

    Article  CAS  Google Scholar 

  5. Parker, M.J. & Clarke, A.R. Biochemistry 36, 5786–5794 (1997).

    Article  CAS  Google Scholar 

  6. Kentsis, A. & Sosnick, T.R. Biochemistry 37, 14613–14622 (1998).

    Article  CAS  Google Scholar 

  7. Krantz, B.A., Moran, L.B., Kentsis, A. & Sosnick, T.R. Nature Struct. Biol. 7, 62–71 (2000).

    Article  CAS  Google Scholar 

  8. Wade, D. Chem. Biol. Interact. 117, 191–217 (1999).

    Article  CAS  Google Scholar 

  9. Jancso, G.V.H. & Alexander, W. Chem. Rev. 74, 689–719 (1974).

    Article  CAS  Google Scholar 

  10. Makhatadze, G.I., Clore, G.M. & Gronenborn, A.M. Nature Struct. Biol. 2, 852–855 (1995).

    Article  CAS  Google Scholar 

  11. Connelly, G.P., Bai, Y., Jeng, M.-F., Mayne, L. & Englander, S.W. Proteins 17, 87–92 (1993).

    Article  CAS  Google Scholar 

  12. Matthews, C.R. Methods Enzymol. 154, 498–511 (1987).

    Article  CAS  Google Scholar 

  13. Krantz, B.A. & Sosnick, T.R. Nature Struct. Biol. 8, 1042–1047. (2001).

    Article  CAS  Google Scholar 

  14. Moran, L.B., Schneider, J.P., Kentsis, A., Reddy, G.A. & Sosnick, T.R. Proc. Natl. Acad. Sci. USA 96, 10699–10704 (1999).

    Article  CAS  Google Scholar 

  15. Waldburger, C.D., Jonsson, T. & Sauer, R.T. Proc. Natl. Acad. Sci. USA 93, 2629–2634 (1996).

    Article  CAS  Google Scholar 

  16. Srivastava, A.K. & Sauer, R.T. Biochemistry 39, 8308–8314 (2000).

    Article  CAS  Google Scholar 

  17. Munoz, V. & Serrano, L. Biopolymers 41, 495–509 (1997).

    Article  CAS  Google Scholar 

  18. Burton, R.E., Huang, G.S., Daugherty, M.A., Calderone, T.L. & Oas, T.G. Nature Struct. Biol. 4, 305–310 (1997).

    Article  CAS  Google Scholar 

  19. Capaldi, A.P., Kleanthous, C. & Radford, S.E. Nature Struct. Biol. 9, 209–216 (2002).

    CAS  PubMed  Google Scholar 

  20. Taddei, N. et al. J. Mol. Biol. 300, 633–647 (2000).

    Article  CAS  Google Scholar 

  21. Itzhaki, L.S., Otzen, D.E. & Fersht, A.R. J. Mol. Biol. 254, 260–288 (1995).

    Article  CAS  Google Scholar 

  22. McCallister, E.L., Alm, E. & Baker, D. Nature Struct. Biol. 7, 669–673 (2000).

    Article  CAS  Google Scholar 

  23. Bulaj, G. & Goldenberg, D.P. Nature Struct. Biol. 8, 326–330 (2001).

    Article  CAS  Google Scholar 

  24. Guo, Z., Brooks, C.L. III & Boczko, E.M. Proc. Natl. Acad. Sci. USA 94, 10161–10166 (1997).

    Article  CAS  Google Scholar 

  25. Honig, B. & Yang, A.S. Adv. Protein. Chem. 46, 27–58 (1995).

    Article  CAS  Google Scholar 

  26. Durr, E., Jelesarov, I. & Bosshard, H.R. Biochemistry 38, 870–880 (1999).

    Article  CAS  Google Scholar 

  27. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  28. Chamberlain, A.K., Handel, T.M. & Marqusee, S. Nature Struct. Biol. 3, 782–787 (1996).

    Article  CAS  Google Scholar 

  29. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. Peptide and Protein Folding Workshop (ed. DeGrado, W.F.) 52–80 (International Business Communications, Philadelphia; 1995).

  30. Sosnick, T.R., Mayne, L. & Englander, S.W. Proteins 24, 413–426 (1996).

    Article  CAS  Google Scholar 

  31. Plaxco, K.W., Simons, K.T. & Baker, D. J. Mol. Biol. 277, 985–994 (1998).

    Article  CAS  Google Scholar 

  32. Fernández, A. J. Chem. Phys. 114, 2489–2502 (2001).

    Article  Google Scholar 

  33. Viguera, A.R., Martinez, J.C., Filimonov, V.V., Mateo, P.L. & Serrano, L. Biochemistry 33, 2142–2150 (1994).

    Article  CAS  Google Scholar 

  34. Nauli, S., Kuhlman, B. & Baker, D. Nature Struct. Biol. 8, 602–605 (2001).

    Article  CAS  Google Scholar 

  35. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Proteins 17, 75–86 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Fernandez, X. Fang, S.W. Englander, N. Kallenbach, C. Brooks, R.S. Berry, T. Pan and our group members for numerous enlightening discussions. This work was supported by grants from the NIH and The Packard Foundation Interdisciplinary Science Program (T.R.S., P. Thiyagarajan, S. Berry, D. Lynn and S. Meredith).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobin R. Sosnick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krantz, B., Srivastava, A., Nauli, S. et al. Understanding protein hydrogen bond formation with kinetic H/D amide isotope effects. Nat Struct Mol Biol 9, 458–463 (2002). https://doi.org/10.1038/nsb794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb794

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing