Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution structure of the DNA-binding domain of MafG

Abstract

The Maf family proteins, which constitute a subgroup of basic region-leucine zipper (bZIP) proteins, function as transcriptional regulators of cellular differentiation. Together with the basic region, the Maf extended homology region (EHR), conserved only within the Maf family, defines the DNA binding specific to Mafs. Here we present the first NMR-derived structure of the DNA-binding domain (residues 1–76) of MafG, which contains the EHR and the basic region. The structure consists of three α-helices and resembles the fold of the DNA-binding domain of Skn-1, a developmental transcription factor of Caenorhabditis elegans. The structural similarity between MafG and Skn-1 enables us to propose a possible mechanism by which Maf family proteins recognize their consensus DNA sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA recognition by MafG(1–76).
Figure 2: 3D structure of MafG(1–76).
Figure 3: Chemical shift changes of amide protons (upper panel) and nitrogens (lower panel) of MafG(1–76) upon binding to the DNA containing the T-MARE-like sequence.
Figure 4: Comparison of MafG(1–76) with the Skn-1 DNA-binding domain.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Motohashi, H., Shavit, J.A., Igarashi, K., Yamamoto, M. & Engel, J.D. NucleicAcids Res. 25, 2953–2959 (1997).

    Article  CAS  Google Scholar 

  2. Blank, V. & Andrews, N.C. Trends Biochem. Sci. 22, 437–441 (1997).

    Article  CAS  Google Scholar 

  3. Motohashi, H., Katsuoka, F., Shavit, J.A., Engel, J.D. & Yamamoto, M. Cell 103, 865–875 (2000).

    Article  CAS  Google Scholar 

  4. Kataoka, K. et al. Mol. Cell. Biol. 15, 2180–2190 (1995).

    Article  CAS  Google Scholar 

  5. Kataoka, K., Fujiwara, K.T., Noda, M. & Nishizawa, M. Mol. Cell. Biol. 14,7581–7591 (1994).

    Article  CAS  Google Scholar 

  6. Kerppola, T.K. & Curran, T. Oncogene 9, 3149–3158 (1994).

    CAS  PubMed  Google Scholar 

  7. Wishart, D.S. & Sykes, B.D. Methods Enzymol. 239, 36–81 (1994).

    Google Scholar 

  8. Farrow, N.A. et al. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  9. Harper, E.T. & Rose, G.D. Biochemistry 32, 7605–7609 (1993).

    Article  CAS  Google Scholar 

  10. Wintjens, R. & Rooman, M. J. Mol. Biol. 262, 294–313 (1996).

    Article  CAS  Google Scholar 

  11. Lo, M.C., Ha, S., Pelczer, I., Pal, S. & Walker, S. Proc. Natl. Acad. Sci. USA 95, 8455–8460 (1998).

    Article  CAS  Google Scholar 

  12. Rupert, P.B., Daughdrill, G.W., Bowerman, B. & Matthews, B.W. Nature Struct. Biol. 5, 484–491 (1998).

    Article  CAS  Google Scholar 

  13. Ellenberger, T.E., Brandl, C.J., Struhl, K. & Harrison, S.C. Cell 71, 1223–1237 (1992).

    Article  CAS  Google Scholar 

  14. Glover, J.N. & Harrison, S.C. Nature 373, 257–261 (1995).

    Article  CAS  Google Scholar 

  15. Delaglio, F. et al. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  16. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. J. Magn. Reson. 95,214–220 (1991).

    CAS  Google Scholar 

  17. Sattler, M., Schleucher, J. & Griesinger, C. Prog. NMR Spect. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  18. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Biochemistry 28,7510–7516 (1989).

    Article  CAS  Google Scholar 

  19. Tomomori, C. et al. Nature Struct. Biol. 6, 729–734 (1999).

    Article  CAS  Google Scholar 

  20. Vuister, G.W. & Bax, A. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  21. Nilges, M., Clore, G.M. & Gronenborn, A.M. FEBS Lett. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  22. Brünger, A.T. X-PLOR version 3.1: A system for X-ray crystallography and NMR (Yale University Press, New Haven; 1993).

  23. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  24. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  25. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  26. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  27. Azam, T.A. & Ishihama, A. J. Biol. Chem. 274, 33105–33113 (1999).

    Article  CAS  Google Scholar 

  28. Johnson, M.L., Correia, J.J., Yphantis, D.A. & Halvorson, H.R. Biophys. J. 36, 575–588 (1981).

    Article  CAS  Google Scholar 

  29. Laue, T.M., Bhairavi, D.S., Ridgeway, T.M. & Pelletier, S.L. In Analytical ultracentrifugation in biochemistry and polymer science (eds Harding, S.E., Rowe, A.J. & Horton, J.C) 90–125 (Royal Society of Chemistry, London; 1992).

    Google Scholar 

  30. Brooks, B.R. et al. J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  31. Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton,J.M. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Arai and F. Arisaka for ultracentrifuge analysis, T. Maeda for useful discussion, K. Yap for providing a program to calculate interhelical angles and T. O'Connor for critical reading of the manuscript. This work was supported by grants from JSPS and TARA (T.T.); the Ministry of Education, Science, Sports and Culture of Japan (H.M. and M.Y.); JSPS and CREST (M.Y.); and PROBRAIN (H.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusunoki, H., Motohashi, H., Katsuoka, F. et al. Solution structure of the DNA-binding domain of MafG. Nat Struct Mol Biol 9, 252–256 (2002). https://doi.org/10.1038/nsb771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing