Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the human TβR2 ectodomain–TGF-β3 complex

Abstract

Transforming growth factor-β (TGF-β) is the prototype of a large family of structurally related cytokines that play key roles in maintaining cellular homeostasis by signaling through two classes of functionally distinct Ser/Thr kinase receptors, designated as type I and type II. TGF-β initiates receptor assembly by binding with high affinity to the type II receptor. Here, we present the 2.15 Å crystal structure of the extracellular ligand-binding domain of the human TGF-β type II receptor (ecTβR2) in complex with human TGF-β3. ecTβR2 interacts with homodimeric TGF-β3 by binding identical finger segments at opposite ends of the growth factor. Relative to the canonical 'closed' conformation previously observed in ligand structures across the superfamily, ecTβR2-bound TGF-β3 shows an altered arrangement of its monomeric subunits, designated the 'open' conformation. The mode of TGF-β3 binding shown by ecTβR2 is compatible with both ligand conformations. This, in addition to the predicted mode for TGF-β binding to the type I receptor ectodomain (ecTβR1), suggests an assembly mechanism in which ecTβR1 and ecTβR2 bind at adjacent positions on the ligand surface and directly contact each other via protein–protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the (ecTβR2)2–TGF-β3 complex.
Figure 2: Sequence alignment of TGF-β superfamily members and type II receptor ectodomains.
Figure 3: Contacts at the (ecTβR2)2–TGF-β3 interface.
Figure 4: Model for the relative positioning of the type I and type II receptor ectodomains in the TGF-β–receptor signaling complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schlunegger, M.P. & Grütter, M.G. J. Mol. Biol. 231, 445–458. (1993).

    Article  CAS  Google Scholar 

  2. Daopin, S., Li, M. & Davies, D.R. Proteins Struct. Func. Genet. 17, 176–192 (1993).

    Article  CAS  Google Scholar 

  3. Hinck, A.P. et al. Biochemistry 35, 8517–8534 (1996).

    Article  CAS  Google Scholar 

  4. Mittl, P.R.E. et al. Protein Sci. 5, 1261–1271 (1996).

    Article  CAS  Google Scholar 

  5. Scheufler, C., Sebald, W. & Hulsmeyer, M. J. Mol. Biol. 287, 103–115 (1999).

    Article  CAS  Google Scholar 

  6. Griffith, D.L., Keck, P.C., Sampath, T.K., Rueger, D.C. & Carlson, W.D. Proc. Natl. Acad. Sci. USA 93, 878–883 (1996).

    Article  CAS  Google Scholar 

  7. Roberts, A.B. & Sporn, M.B. In Peptide growth factors and their receptors (eds Roberts, A.B. & Sporn, M.B.) 421–472 (Springer-Verlag, Heidelberg; 1990).

    Google Scholar 

  8. Wrana, J.L., Attisano, L., Wiesner, R., Ventura, F. & Massagué, J. Nature 370, 341–347 (1994).

    Article  CAS  Google Scholar 

  9. Massague, J. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  CAS  Google Scholar 

  10. Daopin, S., Piez, K.A., Ogawa, Y. & Davies, D.R. Science 257, 369–374 (1992).

    Article  CAS  Google Scholar 

  11. Schlunegger, M.P. & Grütter, M.G. Nature 358, 430–434 (1992).

    Article  CAS  Google Scholar 

  12. Eigenbrot, C. & Gerber, N. Nature Struct. Biol. 4, 435–438. (1997).

    Article  CAS  Google Scholar 

  13. Greenwald, J., Fischer, W.H., Vale, W.W. & Choe, S. Nature Struct. Biol. 6, 18–22 (1999).

    Article  CAS  Google Scholar 

  14. Kirsch, T., Sebald, W. & Dreyer, M.K. Nature Struct. Biol. 7, 492–496 (2000).

    Article  CAS  Google Scholar 

  15. Gray, P.C. et al. J. Biol. Chem. 275, 3206–3212 (2000).

    Article  CAS  Google Scholar 

  16. Pellaud, J., Schote, U., Arvinte, T. & Seelig, J. J. Biol. Chem. 274, 7699–7704 (1999).

    Article  CAS  Google Scholar 

  17. Bocharov, E.V. et al. J. Biomol. NMR 16, 179–180 (2000).

    Article  CAS  Google Scholar 

  18. Burmester, J.K. et al. Proc. Natl. Acad. Sci. USA 90, 8628–8632 (1993).

    Article  CAS  Google Scholar 

  19. Qian, S.W. et al. J. Biol. Chem. 271, 30656–30662 (1996).

    Article  CAS  Google Scholar 

  20. Burmester, J.K. et al. Growth Factors 15, 231–242 (1998).

    Article  CAS  Google Scholar 

  21. Kirsch, T., Nickel, J. & Sebald, W. EMBO J. 19, 3314–3324 (2000).

    Article  CAS  Google Scholar 

  22. Feng, X.-H. & Derynck, R. J. Biol. Chem. 271, 13123–13129 (1996).

    Article  CAS  Google Scholar 

  23. Zhu, H.J. & Sizeland, A.M. J. Biol. Chem. 274, 29220–29227 (1999).

    Article  CAS  Google Scholar 

  24. Weis-Garcia, F. & Massagué, J. EMBO J. 15, 276–289 (1996).

    Article  CAS  Google Scholar 

  25. de Vos, A.M., Ultsch, M. & Kossiakoff, A.A. Science 255, 306–312 (1992).

    Article  CAS  Google Scholar 

  26. Somers, W., Ultsch, M., De Vos, A.M. & Kossiakoff, A.A. Nature 372, 478–481 (1994).

    Article  CAS  Google Scholar 

  27. Rosenweig, B.L. et al. Proc. Natl. Acad. Sci. USA 92, 7632–7636 (1995).

    Article  Google Scholar 

  28. Nohno, T. et al. J. Biol. Chem. 270, 22522–22526 (1995).

    Article  CAS  Google Scholar 

  29. Hinck, A.P., et al. J. Biomol. NMR 18, 369–370 (2000).

    Article  CAS  Google Scholar 

  30. Cerletti, N. Process for the production of biologically active dimeric protein. U.S. Patent 6,057,430 (2000).

    Google Scholar 

  31. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  32. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  33. Bailey, S. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  34. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  35. Brünger, A.T. X-PLOR manual version 3.1: A system for X-RAY crystallography and NMR (Yale University, New Haven; 1992).

    Google Scholar 

  36. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  37. Cohen, G.H. J. Appl. Crystallogr. 30, 1160–1161 (1997).

    Article  CAS  Google Scholar 

  38. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  39. Esnouf, R.M. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  40. Persistance of Vision Ray Tracer v3.02 http://www.povray.org (1997).

  41. Nicholls, A., Sharp, K.A. & Honig, B. Proteins Struct. Func. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  42. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  43. Wuytens, G. et al. J. Biol. Chem. 274, 9821–9827 (1999).

    Article  CAS  Google Scholar 

  44. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Flaks and J. Berendzen at beamline X8-C at the NSLS, Brookhaven National Laboratory; Z. Dauter and D. Cascio for valuable discussions; OSI Pharmaceuticals for providing E. coli recombinant TGF-β3; and past and present colleagues who commented on the manuscript. This work was supported by an NIGMS grant to A.P.H. and Robert A. Welch Foundation grants to A.P.H. and P.J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Hinck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, P., Deep, S., Taylor, A. et al. Crystal structure of the human TβR2 ectodomain–TGF-β3 complex. Nat Struct Mol Biol 9, 203–208 (2002). https://doi.org/10.1038/nsb766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing