Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays

Abstract

The SIN domain within histones H3 and H4 is defined by a set of single amino acid substitutions that were initially identified as mutations that alleviate the transcriptional defects associated with inactivation of the SWI/SNF chromatin remodeling complex. Here we use recombinant histones to investigate how Sin versions of H4 alter the structure of nucleosomal arrays. We find that an R45C substitution within the SIN domain of H4 does not disrupt nucleosome positioning nor does this Sin version alter the accessibility of nucleosomal DNA. In contrast, we find that the R45C substitution eliminates Mg2+-dependent, intramolecular folding of the nucleosomal arrays. Our results suggest that Sin versions of histones may alleviate the need for SWI/SNF in vivo by disrupting higher-order chromatin folding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sin versions of histone H4 are competent to form nucleosomal arrays.
Figure 2: Sin versions of histone H4 abolish intramolecular folding of arrays.
Figure 3: SWI/SNF efficiently remodels both wild type and Sin arrays.
Figure 4: The SIN domain plays a key role in the organization of both the central and peripheral wraps of nucleosomal DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Winston, F. & Carlson, M. Trends Genet. 8, 387–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Kruger, W. et al. Genes Dev. 9, 2770–2779 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Wechser, M.A., Kladde, M.P., Alfieri, J.A. & Peterson, C.L. EMBO J. 16, 2086–2095 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simpson, R.T., Thoma, F. & Brubaker, J.M. Cell 42, 799–808 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Hansen, J.C., Ausio, J., Stanik, V.H. & van Holde, K.E. Biochemistry 28, 9129–9136 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Dong, F., Hansen, J.C. & van Holde, K.E. Proc. Natl. Acad. Sci. USA 87, 5724–5728 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Methods Mol. Biol. 119, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  9. Hansen, J.C. & Lohr, D. J. Biol. Chem. 268, 5840–5848 (1993).

    CAS  PubMed  Google Scholar 

  10. Tse, C. & Hansen, J.C. Biochemistry 36, 11381–11388 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Carruthers, L.M., Bednar, J., Woodcock, C.L. & Hansen, J.C. Biochemistry 37, 14776–14787 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Fletcher, T.M., Serwer, P. & Hansen, J.C. Biochemistry 33, 10859–10863 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Fletcher, T.M., Krishnan, U., Serwer, P. & Hansen, J.C. Biochemistry 33, 2226–2233 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Hansen, J.C. & Lohr, D. J. Biol. Chem. 268, 5840–5848 (1993).

    CAS  PubMed  Google Scholar 

  15. Fletcher, T.M. & Hansen, J.C. J. Biol. Chem. 270, 25359–25362 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Ramirez, M., Dong, F. & Ausio, J. J. Biol. Chem. 267, 19587–19595 (1992).

    CAS  PubMed  Google Scholar 

  17. Logie, C. & Peterson, C.L. EMBO J. 16, 6772–6782 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Logie, C., Tse, C., Hansen, J.C. & Peterson, C.L. Biochemistry 38, 2514–2522 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Boyer, L.A. et al. J. Biol. Chem. 275, 18864–18870 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Jaskelioff, M., Gavin, I., Peterson, C.L. & Logie, C. Mol. Cell. Biol. 20, 3058–3068 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krebs, J.E., Fry, C.J., Samuels, M. & Peterson, C.L. Cell 102, 587–598(2000).

    Article  CAS  PubMed  Google Scholar 

  22. Fletcher, T.M. & Hansen, J.C. Crit. Rev. Eukaryot. Gene Expr. 6, 149–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Schwarz, P.M. & Hansen, J.C. J. Biol. Chem. 269, 16284–16289 (1994).

    CAS  PubMed  Google Scholar 

  24. Schwarz, P.M., Felthauser, A., Fletcher, T.M. & Hansen, J.C. Biochemistry 35, 4009–4015 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Pollard, K.J., Samuels, M.L., Crowley, K.A., Hansen, J.C. & Peterson, C.L. EMBO J. 18, 5622–5633 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belmont, A.S. & Bruce, K. J. Cell Biol. 127, 287–302 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Kurumizaka, H. & Wolffe, A.P. Mol. Cell. Biol. 17, 6953–6969 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Holde, K.E. & Weischet, W.O. Biopolymers 17, 1387–1403 (1978).

    Article  CAS  Google Scholar 

  29. Luger, K. & Richmond, T.J. Curr. Opin. Struct. Biol. 8, 33–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Luger for assistance in preparation of recombinant histones and helpful advice throughout the course of these studies, and M. Shogren-Knaak and E. Merithew for help with the preparation of Fig. 4. These studies were supported by grants from the NIH to C.L.P. and J.C.H., and a NIH NRSA to P.J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig L. Peterson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, P., Crowley, K., Carruthers, L. et al. The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays. Nat Struct Mol Biol 9, 167–171 (2002). https://doi.org/10.1038/nsb762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb762

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing