Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SNARE assembly and disassembly exhibit a pronounced hysteresis

Abstract

SNARE proteins are essential for intracellular membrane fusion of eukaryotes. Their assembly into stable four-helix bundles bridges membranes and may provide the energy for initiating membrane fusion. In vitro, assembly of soluble SNARE fragments is accompanied by major structural rearrangements that can be described as a folding reaction. The pathways and the thermodynamics of SNARE protein interactions, however, are not known. Here we report that assembly and dissociation of two distantly related SNARE complexes exhibit a marked hysteresis. The assembled and disassembled native states are separated by a kinetic barrier and cannot equilibrate on biologically relevant timescales. We suggest that the hysteresis is a hallmark of all SNARE complexes and that complex assembly and disassembly follow different pathways that may be independently controlled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unfolding and refolding transitions of the synaptic SNARE complex exhibited a marked hysteresis.
Figure 2: Hysteresis in the unfolding and folding transition of the synaptic SNARE complex visualized by SDS-PAGE.
Figure 3: Unfolding and refolding transitions of an endosomal SNARE complex are noncoincident.
Figure 4: Equilibrium unfolding of the syntaxin–SNAP-25 complex monitored by CD spectroscopy.
Figure 5: Unfolding kinetics of the synaptic complex monitored by CD spectroscopy at 220 nm.
Figure 6: Biphasic refolding kinetics of the synaptic SNARE complex suggest assembly via a syntaxin–SNAP-25 intermediate.

Similar content being viewed by others

References

  1. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975).

    Article  CAS  Google Scholar 

  2. Zimmerberg, J. & Chernomordik, L.V. Membrane fusion. Adv. Drug. Deliv. Rev. 38, 197–205 (1999).

    Article  CAS  Google Scholar 

  3. Lentz, B.R., Malinin, V., Haque, M.E. & Evans, K. Protein machines and lipid assemblies: current views of cell membrane fusion. Curr. Opin. Struct. Biol. 10, 607–615 (2000).

    Article  CAS  Google Scholar 

  4. Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  Google Scholar 

  5. Lin, R.C. & Scheller, R.H. Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol. 16, 19–49 (2000).

    Article  CAS  Google Scholar 

  6. Hanson, P.I., Heuser, J.E. & Jahn, R. Neurotransmitter release - four years of SNARE complexes. Curr. Opin. Neurobiol. 7, 310–315 (1997).

    Article  CAS  Google Scholar 

  7. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  8. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 (1998).

    Article  CAS  Google Scholar 

  9. Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–580 (1998).

    Article  CAS  Google Scholar 

  10. Peters, C. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581–588 (2001).

    Article  CAS  Google Scholar 

  11. Misura, K.M., May, A.P. & Weiss, W.I. Protein-protein interactions in intracellular membrane fusion. Curr. Opin. Struct. Biol. 10, 662–671 (2000).

    Article  CAS  Google Scholar 

  12. Brünger, A.T. Structural insights into the molecular mechanism of calcium-dependent vesicle-membrane fusion. Curr. Opin. Struct. Biol. 11, 163–73 (2001).

    Article  Google Scholar 

  13. Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brünger, A.T. A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 7, 4582–4590 (1997).

    Article  Google Scholar 

  14. Fasshauer, D., Otto, H., Eliason, W.K., Jahn, R. & Brünger, A.T. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272, 28036–28041 (1997).

    Article  CAS  Google Scholar 

  15. Fasshauer, D., Eliason, W.K., Brünger, A.T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354–10362 (1998).

    Article  CAS  Google Scholar 

  16. Fiebig, K.M., Rice, L.M., Pollock, E. & Brünger, A.T. Folding intermediates of SNARE complex assembly. Nature Struct. Biol. 6, 117–123 (1999).

    Article  CAS  Google Scholar 

  17. Hazzard, J., Sudhof, T.C. & Rizo, J. NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J. Biomol. NMR 14, 203–207 (1999).

    Article  CAS  Google Scholar 

  18. Margittai, M., Fasshauer, D., Pabst, S., Jahn, R. & Langen, R. Homo- and heterooligomeric snare complexes studied by site-directed spin labeling. J. Biol. Chem. 276, 13169–77. (2001).

    Article  CAS  Google Scholar 

  19. Sutton, R.B., Fasshauer, D., Jahn, R. & Brünger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–53 (1998).

    Article  CAS  Google Scholar 

  20. Fasshauer, D., Sutton, R.B., Brünger, A.T. & Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. USA 95, 15781–15786 (1998).

    Article  CAS  Google Scholar 

  21. Rice, L.M., Brennwald, P. & Brünger, A.T. Formation of a yeast SNARE complex is accompanied by significant structural changes. FEBS Lett. 415, 49–55 (1997).

    Article  CAS  Google Scholar 

  22. Nicholson, K.L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nature Struct. Biol. 5, 793–802 (1998).

    Article  CAS  Google Scholar 

  23. Munson, M., Chen, X., Cocina, A.E., Schultz, S.M. & Hughson, F.M. Interactions within the yeast t-SNARE sso1p that control SNARE complex assembly. Nature Struct. Biol. 7, 894–902 (2000).

    Article  CAS  Google Scholar 

  24. Antonin, W. et al. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J. 19, 6453–6464 (2000).

    Article  CAS  Google Scholar 

  25. Xiao, W., Poirier, M.A., Bennett, M.K. & Shin, Y.K. The neuronal t-SNARE complex is a parallel four-helix bundle. Nature Struct. Biol. 8, 308–311 (2001).

    Article  CAS  Google Scholar 

  26. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  27. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  28. Dill, K.A. Folding proteins: finding a needle in a haystack. Curr. Opin. Struct. Biol. 3, 99–103 (1993).

    Article  CAS  Google Scholar 

  29. Baker, D. & Agard, D.A. Kinetics versus thermodynamics in protein folding. Biochemistry 33, 7505–7509 (1994).

    Article  CAS  Google Scholar 

  30. Plaza del Pino, I.M., Ibarra-Molero, B. & Sanchez-Ruiz, J.M. Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins 40, 58–70 (2000).

    Article  CAS  Google Scholar 

  31. Sinclair, J.F., Ziegler, M.M. & Baldwin, T.O. Kinetic partitioning during protein folding yields multiple native states. Nature Struct. Biol. 1, 320–326 (1994).

    Article  CAS  Google Scholar 

  32. Lai, Z., McCulloch, J., Lashuel, H.A. & Kelly, J.W. Guanidine hydrochloride-induced denaturation and refolding of transthyretin exhibits a marked hysteresis: equilibria with high kinetic barriers. Biochemistry 36, 10230–10239 (1997).

    Article  CAS  Google Scholar 

  33. Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. & Jahn, R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15440–15446 (1999).

    Article  CAS  Google Scholar 

  34. Poirier, M.A. et al. Protease resistance of syntaxin.SNAP-25.VAMP complexes. Implications for assembly and structure. J. Biol. Chem. 273, 11370–11377 (1998).

    Article  CAS  Google Scholar 

  35. Pace, C.N. The stability of globular proteins. CRC Crit. Rev. Biochem. 3, 1–43. (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very much indebted to K. Fiebig for pointing out in the beginning of the study that the observed hysteresis could be due to a folding intermediate. We thank M. Margittai, R. Langen, D. Bruns, T. Heimburg, S. Pabst, V. Knecht, G. Schröder and H. Grubmüller for stimulating discussions, suggestions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Fasshauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasshauer, D., Antonin, W., Subramaniam, V. et al. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat Struct Mol Biol 9, 144–151 (2002). https://doi.org/10.1038/nsb750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing