Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of a metal-binding site in gelsolin leads to familial amyloidosis–Finnish type

Abstract

Mutations in domain 2 (D2, residues 151–266) of the actin-binding protein gelsolin cause familial amyloidosis–Finnish type (FAF). These mutations, D187N or D187Y, lead to abnormal proteolysis of plasma gelsolin at residues 172–173 and a second hydrolysis at residue 243, resulting in an amyloidogenic fragment. Here we present the structure of human gelsolin D2 at 1.65 Å and find that Asp 187 is part of a Cd2+ metal-binding site. Two Ca2+ ions are required for a conformational transition of gelsolin to its active form. Differential scanning calorimetry (DSC) and molecular dynamics (MD) simulations suggest that the Cd2+-binding site in D2 is one of these two Ca2+-binding sites and is essential to the stability of D2. Mutation of Asp 187 to Asn disrupts Ca2+ binding in D2, leading to instabilities upon Ca2+ activation. These instabilities make the domain a target for aberrant proteolysis, thereby enacting the first step in the cascade leading to FAF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystal structure of human gelsolin D2 (residues 159–261 shown).
Figure 2: Time course of the wild type and D187N mutant simulations.
Figure 3: More specific interactions contributing to alterations in structure and dynamics at the aberrant clip site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Puius, Y.A., Mahoney, N.M. & Almo, S.C. Curr. Opin. Cell Biol. 10, 23–34 (1998).

    Article  CAS  Google Scholar 

  2. Weeds, A.G., Gooch, J., Pope, B. & Herris, H.E. Eur. J. Biochem. 161, 69–76 (1986).

    Article  CAS  Google Scholar 

  3. Burtnick, L.D. et al. Cell 90, 661–670 (1997).

    Article  CAS  Google Scholar 

  4. Robinson, R.C. et al. Science 286, 1939–1942 (1999).

    Article  CAS  Google Scholar 

  5. Pope, B.J., Maciver, S. & Weeds, A.G. Biochemistry 34, 1583–1588 (1995).

    Article  CAS  Google Scholar 

  6. Pope, B.J., Gooch, J.T. & Weeds, A.G. Biochemistry 36, 15848–15855 (1997).

    Article  CAS  Google Scholar 

  7. Zapun, A., Grammatyka, S., Déral, G. & Vernet, T. Biochem. J. 350, 873–881 (2000).

    Article  CAS  Google Scholar 

  8. Kiuru, S. Int. J. Exp. Clin. Invest. 5, 55–66 (1998).

    CAS  Google Scholar 

  9. Maury, C.P., Nurmiaho-Lassila, E.L. & Rossi, H. Lab. Invest. 70, 558–564 (1994).

    CAS  PubMed  Google Scholar 

  10. Maury, C.P., Sletten, K., Totty, N., Kangas, H. & Liljestrom, M. Lab. Invest. 77, 299–304 (1997).

    CAS  PubMed  Google Scholar 

  11. Isaacson, R.L., Weeds, A.G. & Fersht, A.R. Proc. Natl. Acad. Sci. USA 96, 11247–11252 (1999).

    Article  CAS  Google Scholar 

  12. Ratnaswamy, G., Huff, M.E., Su, A.I., Rion, S. & Kelly, J.W. Proc. Natl. Acad. Sci. USA 98, 2334–2339 (2001).

    Article  CAS  Google Scholar 

  13. Kazmirski, S.L., Howard, M.J., Isaacson, R.L. & Fersht, A.R. Proc. Natl. Acad. Sci. USA 97, 10706–10711 (2000).

    Article  CAS  Google Scholar 

  14. Puius, Y.A., Fedorov, E.V., Eichinger, L., Schleicher, M. & Almo, S.C. Biochemistry 39, 5322–5331 (2000).

    Article  CAS  Google Scholar 

  15. Swain, A.L., Krestinger, R.H. & Amma, E.L. J. Biol. Chem. 264, 16620–16628 (1989).

    CAS  PubMed  Google Scholar 

  16. Sun, H.-Q., Yamamoto, M., Mejillano, M. & Yin, H.L. J. Biol. Chem. 274, 33179–33182 (1999).

    Article  CAS  Google Scholar 

  17. Sun, H.-Q., Wooten, D.C., Janmey, P.A. & Yin, H.L. J. Biol. Chem. 269, 9473–9479 (1994).

    CAS  PubMed  Google Scholar 

  18. Robinson, R.C, Choe, S. & Burtnick, L.D. Proc. Natl. Acad. Sci. USA 98, 2117–2118 (2001).

    Article  CAS  Google Scholar 

  19. McPherson, A. The preparation and analysis of protein crystals (John Wiley & Sons, New York; 1982).

    Google Scholar 

  20. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  21. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  22. Brünger, A.T. XPLOR. A system for X-ray crystallography and NMR (Yale University Press, New Haven; 1992).

    Google Scholar 

  23. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  24. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

  26. Levitt, M. ENCAD — Energy calculations and dynamics (Molecular Applications Group; Stanford and Rehovot; 1990).

    Google Scholar 

  27. Levitt, M., Hirshberg, M., Sharon, R. & Daggett, V. Comp. Phys. Comm. 91, 215–231 (1995).

    Article  CAS  Google Scholar 

  28. Case, D.A. et al. AMBER 5 (University of California at San Francisco, San Francisco; 1997).

    Google Scholar 

  29. Levitt, M., Hirshberg, M., Sharon, R., Laidig, K.E. & Daggett, V. J. Phys. Chem. B 101, 5051–5061 (1997).

    Article  CAS  Google Scholar 

  30. Becktel, W.J. & Schellman, J.A. Biopolymers 26, 1859–1877 (1987).

    Article  CAS  Google Scholar 

  31. Johnson, C.M., Oliveberg, M., Clarke, J. & Fersht, A.R. J. Mol. Biol. 268, 198–208 (1997).

    Article  CAS  Google Scholar 

  32. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Bacon, D.J. & Anderson, W.F. J. Mol. Graph. 6, 219–220 (1998).

    Article  Google Scholar 

  34. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  35. Ferrin, T.E., Huang, L.E., Jarvis, L.E. & Langridge, R. J. Mol. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  36. Read, R. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Bycroft for helpful discussions, advice and reviewing the manuscript. We thank A.G. Weeds and B.J. Pope (MRC Laboratory of Molecular Biology, Cambridge, UK) for helpful discussions and advice. S.L.K. was funded by a Hitchings-Elion Fellowship from the Burroughs-Wellcome Fund. Support for the computational studies was provided by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Fersht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazmirski, S., Isaacson, R., An, C. et al. Loss of a metal-binding site in gelsolin leads to familial amyloidosis–Finnish type. Nat Struct Mol Biol 9, 112–116 (2002). https://doi.org/10.1038/nsb745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing