Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor

Abstract

Polyamines are essential in all branches of life. Spermidine synthase (putrescine aminopropyltransferase, PAPT) catalyzes the biosynthesis of spermidine, a ubiquitous polyamine. The crystal structure of the PAPT from Thermotoga maritima (TmPAPT) has been solved to 1.5 Å resolution in the presence and absence of AdoDATO (S-adenosyl-1,8-diamino-3-thiooctane), a compound containing both substrate and product moieties. This, the first structure of an aminopropyltransferase, reveals deep cavities for binding substrate and cofactor, and a loop that envelops the active site. The AdoDATO binding site is lined with residues conserved in PAPT enzymes from bacteria to humans, suggesting a universal catalytic mechanism. Other conserved residues act sterically to provide a structural basis for polyamine specificity. The enzyme is tetrameric; each monomer consists of a C-terminal domain with a Rossmann-like fold and an N-terminal β-stranded domain. The tetramer is assembled using a novel barrel-type oligomerization motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Overall structure of TmPAPT monomer and architecture of the tetramer.
Figure 3: Sequence alignment of TmPAPT with plant and human PAPTs and with PNMT.
Figure 4: Interaction of AdoDATO with TmPAPT.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pegg, A.E. Biochem J. 234, 249–262 (1986).

    Article  CAS  Google Scholar 

  2. Pegg, A.E., Poulin, R. & Coward, J.K. Int. J. Biochem. Cell Biol. 27, 425–442 (1995).

    Article  CAS  Google Scholar 

  3. Lakanen, J.R., Pegg, A.E. & Coward, J.K. J. Med. Chem. 38, 2714–2727 (1995).

    Article  CAS  Google Scholar 

  4. Tang, K.C., Pegg, A.E. & Coward, J.K. Biochem. Biophys. Res. Commun. 96, 1371–1377 (1980).

    Article  CAS  Google Scholar 

  5. Rossmann, M.G., Liljas, A., Branden, C.-I. & Banaszak, L.K. Oxidation-reduction (ed. Boyer, P.D.) 61–102 (Academic Press, New York; 1975).

    Google Scholar 

  6. Fauman, E.B., Blumenthal, R.M. & Cheng, X. S-Adenosylmethionine-dependent methyltransferases (eds Cheng, X. & Blumenthal, R.M.) 1–38 (World Scientific Publishing, Singapore; 1999).

    Book  Google Scholar 

  7. Holm, L. & Sander, C. Nucleic Acids Res. 24, 206–209 (1996).

    Article  CAS  Google Scholar 

  8. Vidgren, J., Svensson, L.A. & Liljas, A. Nature 368, 354–358 (1994).

    Article  CAS  Google Scholar 

  9. Fu, Z. et al. Biochemistry 35, 11985–11993 (1996).

    Article  CAS  Google Scholar 

  10. Schluckebier, G., Kozak, M., Bleimling, N., Weinhold, E. & Saenger, W. J. Mol. Biol. 265, 56–67 (1997).

    Article  CAS  Google Scholar 

  11. Hofmann, K., Bucher, P., Falquet, L. & Bairoch, A. Nucleic Acids Res. 27, 215–219 (1999).

    Article  CAS  Google Scholar 

  12. Malone, T., Blumenthal, R.M. & Cheng, X. J. Mol. Biol. 253, 618–632 (1995).

    Article  CAS  Google Scholar 

  13. Salminen, T. et al. Protein Sci. 5, 1014–1025 (1996).

    Article  CAS  Google Scholar 

  14. Hamana, K. et al. Microbios 94, 7–21 (1998).

    Google Scholar 

  15. Shirahata, A., Takahashi, N., Beppu, T., Hosoda, H. & Samejima, K. Biochem. Pharmacol. 45, 1897–1903 (1993).

    Article  CAS  Google Scholar 

  16. Orr, G.J. et al. J. Am. Chem. Soc. 110, 5791–5799 (1988).

    Article  CAS  Google Scholar 

  17. Scavetta, R. D. et al. Nucleic Acids Res . 28, 3950–3961 (2000).

    Article  CAS  Google Scholar 

  18. Wiest, L. & Pegg, A.E. Methods in molecular biology, Vol. 79 (ed. Morgan, D.M.L.) 51–58 (Humana Press, Totowa, New Jersey, 1997).

    Google Scholar 

  19. Zhang, R.-G. et al. Structure 9, 1095–1106 (2001).

    Article  CAS  Google Scholar 

  20. Hauptman, H.A. Methods Enzymol. 277, 3–13 (1997).

    Article  CAS  Google Scholar 

  21. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  22. Cowtan, K. & Main, P. Acta Crystallogr. D 54, 487–493 (1998).

    Article  CAS  Google Scholar 

  23. Perrakis, A., Morris, R. & Lamzin, V.S. Nature Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  24. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  26. Abagyan, R.A., Totrov, M.M. & Kuznetsov, D.N. J. Comp. Chem. 15, 488–506 (1994).

    Article  CAS  Google Scholar 

  27. Thompson, J.D., Higgins, D.G. & Gibson, T.J. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  28. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  29. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. App. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all members of the SBC at ANL for their help in conducting experiments and L. Keller for help in preparation of this manuscript. This work was supported by the National Institutes of Health; the U.S. Department of Energy, Office of Biological and Environmental Research; the Ontario Research and Development Challenge Fund; and National Institutes of Health. A.M.E. and C.H.A. are CIHR Investigators. The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ('Argonne') under contract with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aled Edwards, Andrzej Joachimiak or Anthony E. Pegg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korolev, S., Ikeguchi, Y., Skarina, T. et al. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Mol Biol 9, 27–31 (2002). https://doi.org/10.1038/nsb737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing