Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mutagenesis of the Dbl homology domain

Abstract

Guanine nucleotide exchange factors in the Dbl family activate Rho GTPases by accelerating dissociation of bound GDP, promoting acquisition of the GTP-bound state. Dbl proteins possess a 200 residue catalytic Dbl-homology (DH) domain, that is arranged in tandem with a C-terminal pleckstrin homology (PH) domain in nearly all cases. Here we report the solution structure of the DH domain of human PAK-interacting exchange protein (βPIX). The domain is composed of 11 α-helices that form a flattened, elongated bundle. The structure explains a large body of mutagenesis data, which, along with sequence comparisons, identify the GTPase interaction site as a surface formed by three conserved helices near the center of one face of the domain. Proximity of the site to the DH C-terminus suggests a means by which PH-ligand interactions may be coupled to DH-GTPase interactions to regulate signaling through the Dbl proteins in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based amino acid sequence alignment (manually modified Clustal) of selected Dbl homology domains.
Figure 2
Figure 3: Stereo view of the backbone (N, Cα, C') of 20 final superimposed structures of the βPIX DH domain.
Figure 4: a, Ribbons80 depiction of a representative conformer from the final ensemble of DH domain structures.
Figure 6: a, Molecular surface of the DH domain oriented as in Fig. 3.
Figure 5: a, Effect of Ser 1216 (corresponding to Thr 104 in βPIX) mutations on UNC-73 DH activity towards mammalian Rac GTPase.

Similar content being viewed by others

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell Biol 15, 1942–1952 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    CAS  PubMed  Google Scholar 

  4. Ridley, A. J., Paterson, H. F., Johnstone, C. L., Diekmann, D. & Hall, A. The small GTP-sinding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibres in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Olson, M. F., Ashworth, A. & Hall, A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269, 1270–1272 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Coso, O.A. et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137–1146 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Bagrodia, S., Derijard, B., Davis, R. J. & Cerione, R. A. Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen- activated protein kinase activation. J. Biol. Chem. 270, 27995–27998 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Hill, C. S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Qiu, R. G., Chen, J., Kirn, D., McCormick, F. & Symons, M. An essential role for Rac in Ras transformation. Nature 374, 457–459 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  12. Michiels, F., Habets, G. G., Stam, J. C., van der Kammen, R. A. & Collard, J. G. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Pasteris, N. G. et al. Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: a putative Rho/Rac guanine nucleotide exchange factor. Cell 79, 669–678 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Billuart, P. et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392, 923– 926 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125– 131 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Bokoch, G. M. & Der, C. J. Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J. 7, 750 –759 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Boguski, M. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643– 654 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Cerione, R. A. & Zheng, Y. The Dbl family of oncogenes. Curr Opin Cell Biol 8, 216– 222 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Zheng, Y., Zangrilli, D., Cerione, R. A. & Eva, A. The pleckstrin homology domain mediates transformation by oncogenic dbl through specific intracellular targeting. J Biol Chem 271, 19017–19020 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Hart, M. J. et al. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem. 269, 62–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Chuang, T. H. et al. Abr and Bcr are multifunctional regulators of the Rho GTP-binding protein family. Proc. Natl. Acad. Sci. USA 92, 10282–10286 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, Y. et al. The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs- specific guanine-nucleotide exchange factor. J. Biol. Chem. 271, 33169–33172 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Steven, R. et al. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92 , 785–795 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Horii, Y., Beeler, J. F., Sakaguchi, K., Tachibana, M. & Miki, T. A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J. 13, 4776–4786 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miki, T., Smith, C. L., Long, J. E., Eva, A. & Fleming, T. P. Oncogene ect2 is related to regulators of small GTP-binding proteins [published erratum appears in Nature 364, 737]. Nature 362, 462–465 (1993).

    Article  CAS  Google Scholar 

  26. Glaven, J. A., Whitehead, I. P., Nomanbhoy, T., Kay, R. & Cerione, R. A. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J Biol Chem 271, 27374– 27381 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Klebe, C., Prinz, H., Wittinghofer, A. & Goody, R. S. The kinetic mechanism of Ran-nucleotide exchange catalyzed by RCC1. Biochemistry 34, 12543–12552 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Pawson, T. Protein modules and signalling networks. Nature 373 , 573–580 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18, 343–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Bagrodia, S., Taylor, S. J., Jordon, K. A., Van Aelst, L. & Cerione, R. A. A novel regulator of p21-activated kinases. J. Biol. Chem. 273, 23633– 23636 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183– 192 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Logan, T. M., Olejniczak, E. T., Xu, R. X. & Fesik, S. W. A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J. Biomol. NMR 3, 225–231 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Kay, L. E., Xu, G. Y., Singer, A. U., Muhandiram, D. R. & Forman-Kay, J. D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain proton and carbon-13 correlations in water samples of proteins. J. Magn. Reson. Ser. B 101, 333– 337 (1993).

    Article  CAS  Google Scholar 

  34. Rosen, M. et al. Selective methyl group protonation of perdeuterated proteins. J. Mol. Biol. 263, 627– 636 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Gardner, K. & Kay, L. Production and incorporation of 15N, 13C, 2H(1H-1 methyl) isoleucine into proteins for multidimensional NMR studies. J. Am. Chem. Soc. 119, 7599–7600 (1997).

    Article  CAS  Google Scholar 

  36. Gardner, K., Rosen, M. & Kay, L. Global folds of highly deuterated, methyl potonated proteins by multidimensional NMR. Biochemistry 36, 1389– 1401 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Metzler, W., Whittekind, M., Goldfarb, V., Mueller, L. & Farmer, B. Incorporation of 1H/13C/15N-(IIe, Leu, Val) into perdeuterated, 15N-labeled protein: potential in structure determination of large proteins by NMR. J. Am. Chem. Soc. 118, 6800–6801 (1996).

    Article  CAS  Google Scholar 

  38. Smith, B. et al. An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residues. J. Biomol. NMR 8, 360–368 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Gardner, K., Konrat, R., Rosen, M. & Kay, L. A (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated 15N, 13C labeled proteins. J. Biomol. NMR 8, 351–356 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Wuthrich, K. NMR of proteins and nucleic acids (John Wiley & Sons, New York; 1986).

    Book  Google Scholar 

  41. Zwahlen, C., Vincent, S. J. F., Gardner, K. H. & Kay, L. E. Significantly improved resolution for NOE correlations from valine and isoleucine (Cg2) methyl groups in 15N,13C- and 15N, 13C, 2H-labeled proteins. J. Am. Chem. Soc. 120, 4825–4831 (1998).

    Article  CAS  Google Scholar 

  42. Wishart, D. S. & Sykes, B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171– 180 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Nilges, M., Macias, M. J., O'Donoghue, S. I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J. Mol. Biol. 269, 408– 422 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, H. & Schreiber, S. L. Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature 376, 788–791 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  46. Mossessova, E., Gulbis, J. M. & Goldberg, J. Structure of the guanine nucleotdie exchange factor of human ARNO and analysis of the interaction with ARF GTPase. Cell 92, 415–423 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  47. Cherfils, J. et al. Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392, 101–104 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Renoult, L. et al. The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97–101 (1998).

    Article  Google Scholar 

  49. Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by SOS. Nature 394, 337–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crespo, P. et al. Rac1 dependent stimulation of the JNK/SAPK signaling pathway by Vav. Oncogene 13, 455– 462 (1996).

    CAS  PubMed  Google Scholar 

  52. Miyamoto, S. et al. A DBL-homologous region of the yeast CLS4/CDC24 gene product is important for Ca(2+)-modulated bud assembly. Biochem. Biophys. Res. Comm. 181, 604–610 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Ron, D. et al. New Biologist 3, 372– 379 (1991).

    CAS  Google Scholar 

  54. Zheng, J. et al. The solution structure of the pleckstrin homology domain of human SOS1. J. Biol. Chem. 272, 30340– 30344 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Koshiba, S. et al. The solution structure of the pleckstrin homology domain of mouse son-of-sevenless 1 (mSos1). J. Mol. Biol. 269 , 579–591 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Nimnual, A. S., Yatsula, B. A. & Bar-Sagi, D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279, 560– 563 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Olson, M. F., Sterpetti, P., Nagata, K., Toksoz, D. & Hall, A. Distinct roles for DH and PH domains in the Lbc oncogene. Oncogene 15, 2827– 2831 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Whitehead, I., Kirk, H., Tognon, C., Trigo-Gonzalez, G. & Kay, R. Expression cloning of lfc, a novel oncogene with structural similarities to guanine nucleotide exchange factors and to the regulatory region of protein kinase C. J. Biol. Chem. 270, 18388–18395 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Lenzen, C., Cool, R. H., Prinz, H., Kuhlmann, J. & Wittinghofer, A. Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm. Biochemistry 37, 7420– 7430 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Goldberg, J. Structural basis for activation of ARF GTPase: Mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell, 95, 273–248 (1998).

    Article  Google Scholar 

  61. Beraud-Dufour, S. et al. A glutamic finger in the guanine nucleotide exchange factor ARNO displaces Mg2+ and the beta-phosphate to destabilize GDP on ARF1. EMBO J. 17, 3651–3659 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, R. & Zheng, Y. Residues of the Rho family GTPases Rho and Cdc42 that specify sensitivity to Dbl-like guanine nucleotide exchange factors. J. Biol. Chem. 272, 4671– 4679 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Soisson, S. M., Nimnual, A. S., Uy, M., Bar-Sagi, D. & Kuriyan, J. Crystal structure of the Dbl and pleckstrin homology domains from the human son of sevenless protein. Cell 95, 259–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, X. et al. NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor trio. Cell 95, 269–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, Y., Cerione, R. & Bender, A. Control of the yeast bud-site assembly GTPase Cdc42. Catalysis of guanine nucleotide exchange by Cdc24 and stimulation of GTPase activity by Bem3. J. Biol. Chem. 269, 2369 –2372 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277– 293 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Johnson, B. A. & Blevins, R. A. NMR View: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Yamazaki, T., Lee, W., Aerosmith, C., Muhandiriam, D. & Kay, L. A suite of tiple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116 , 11655–11666 (1994).

    Article  CAS  Google Scholar 

  69. Muhandiram, D. R. & Kay, L. E. Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. Ser. B 103, 203– 216 (1994).

    Article  CAS  Google Scholar 

  70. Kay, L. E., Y., X. G. & Yamazaki, T. Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O Saturation. J. Magn. Reson. Ser. A 109, 129–133 ( 1994).

    Article  CAS  Google Scholar 

  71. Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. Three dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 89, 496–514 (1990).

    CAS  Google Scholar 

  72. Matsuo, H., Kupce, E., Li, H. & Wagner, G. Use of Selective C alpha pulses for improvement of HN(CA)CO-D and HN(COCA)NH-D experiments. J. Magn. Reson. Ser. B 111, 194– 198 (1996).

    Article  CAS  Google Scholar 

  73. Clubb, R. T., Thanabal, V. & Wagner, G. A new 3D HN(CA)HA experiment for obtaining fingerprint HN -Ha cross peaks in 15N- and 13C-labeled proteins. J. Biomol. NMR 2, 203–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Grzesiek, S. & Bax, A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291– 6293 (1992).

    Article  CAS  Google Scholar 

  75. Palmer, A. G. I., Cavanagh, J., Byrd, R. A. & Rance, M. Sensitivity improvement in three-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson. 96, 416– 424 (1992).

    CAS  Google Scholar 

  76. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wuthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510 –7516 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Brunger, A. T. Crystallography and NMR system. Acta Crystallogr. D54 , 905–921 (1998).

    CAS  Google Scholar 

  78. Brünger, A. T. X-PLOR manual (Yale University, New Haven, Connecticut; 1993).

    Google Scholar 

  79. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Carson, M. J. Ribbons 2.0. J. Appl. Crystallogr. 24, 958 –961 (1991).

    Article  Google Scholar 

  81. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Struct. Funct. Genet. 11, 281–296 ( 1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Min Chook and J. Goldberg for discussion and critical reading of the manuscript; J.Goldberg and S. Bagrodia and R. Cerione for communicating results prior to publication; L. Kay for generously providing many of the NMR pulse sequences used in this study; M. Clore for advice; A. Majumdar and Y. Gosser for assistance with NMR data acquisition; J. Hubbard for computer system support and S. Freihaut for expert administrative assistance. B.A. is supported by a grant from the U.S. Army Breast Cancer Program. M.K.R. gratefully acknowledges support from the National Institutes of Health (PECASE program), Arnold and Mabel Beckman Foundation and Sidney Kimmel Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghazadeh, B., Zhu, K., Kubiseski, T. et al. Structure and mutagenesis of the Dbl homology domain. Nat Struct Mol Biol 5, 1098–1107 (1998). https://doi.org/10.1038/4209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing