Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase

Abstract

5-Aminolaevulinate dehydratase (ALAD) is a homo-octameric metallo-enzyme that catalyses the formation of porphobilinogen from 5-aminolaevulinic acid. The structure of the yeast enzyme has been solved to 2.3 Å resolution, revealing that each subunit adopts a TIM barrel fold with a 39 residue N-terminal arm. Pairs of monomers wrap their arms around each other to form compact dimers and these associate to form a 422 symmetric octamer. All eight active sites are on the surface of the octamer and possess two lysine residues (210 and 263), one of which, Lys 263, forms a Schiff base link to the substrate. The two lysine side chains are close to two zinc binding sites one of which is formed by three cysteine residues (133,135 and 143) while the other involves Cys 234 and His 142. ALAD has features at its active site that are common to both metallo- and Schiff base-aldolases and therefore represents an intriguing combination of both classes of enzyme. Lead ions, which inhibit ALAD potently, replace the zinc bound to the enzyme's unique triple-cysteine site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jordan, P.M. Biosynthesis of tetrapyrroles. In New Comprehensive Biochemistry Vol. 19 (Ed. Neuberger, A. & Van Deenen, L.L.N) 1–65 (Elsevier, Amsterdam; 1991).

    Google Scholar 

  2. Jordan, P.M. Highlights in haem biosynthesis. Curr. Opin. Struct Biol. 4, 902–911 (1994).

    Article  CAS  Google Scholar 

  3. Warren, M.J. & Scott, A.I. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem. Sci. 15, 486–491 (1990).

    Article  Google Scholar 

  4. Jaffe, E.K. Porphobilinogen synthase, the first source of heme's asymmetry. J. Bioenerg. Biomemb. 27, 169–179 (1995).

    Article  CAS  Google Scholar 

  5. Doss, M. et al. New types of hepatic porphyria with porphobilinogen synthase defect and intermittant acute clinical manifestation. Klin. Wochenschr. 57, 1123–1127 (1979).

    Article  CAS  Google Scholar 

  6. Simons, T.J.B. The affinity of human erythrocyte porphobilinogen synthase for Zn2+ and Pb2+. Eur. J. Biochem. 234, 178–183 (1995).

    Article  CAS  Google Scholar 

  7. Guo, G.G., Gu, M. & Etlinger, J.D. 240-kDa proteasome inhibitor (CF-2) is identical to 5-aminolevulinic acid dehydratase. J. Biol. Chem. 269, 12399–12402 (1994).

    PubMed  Google Scholar 

  8. Coux, O., Tanaka, K. & Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes. Ann. Rev. Biochem. 65, 801–847 (1996).

    Article  Google Scholar 

  9. Hester, G. et al. The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 Å resolution. FEBS Lett. 292, 237–242 (1991).

    Article  Google Scholar 

  10. Gamblin, S.J. et al. Activity and specificity of human aldolases. J. Mol. Biol. 219, 573–576 (1991).

    Article  CAS  Google Scholar 

  11. Blom, N.S. et al. Novel active site in E. coli fructose-1, 6-bisphosphate aldolase. Nature Struct. Biol. 3, 856–862 (1996).

    Article  CAS  Google Scholar 

  12. Cooper, S.J. et al. The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel metal-binding active site embedded in a familiar fold. Structure 4, 1303–1315 (1996).

    Article  CAS  Google Scholar 

  13. Mancia, F. et al. Howcoenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 Å resolution. Structure 4, 339–350 (1996).

    Article  CAS  Google Scholar 

  14. Wu, W. et al. The quaternary structure of 5-aminolevulinic acid dehydratase from bovine liver. Proc. Natl. Acad. Sci. USA. 71, 1767–1770 (1974).

    Article  CAS  Google Scholar 

  15. Pilz, I. et al. Small angle X-ray scattering study of bovine porphobilinogen synthase. Biol. Chem. Hoppe-Seyler 369, 1099–1103 (1988).

    Article  CAS  Google Scholar 

  16. Senior, N. PhD Thesis, University of London, UK (1996).

  17. Boese, Q.F. et al. 5-aminolevulinic acid dehydratase in pea. Identification of an unusual metal-binding domain in the plant enzyme. J. Biol. Chem. 266, 17060–17066.

  18. Dent, A. et al. Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by extended X-ray absorption fine structure. Biochemistry 29, 7822–7828.

    Article  CAS  Google Scholar 

  19. Erskine, P.T. PhD Thesis, University of London (1997).

  20. Blom, N. and Sysgusch, J. Product binding and the role of the C-terminal region in class I D-fructose-1,6-bisphosphate aldolase. Nature Struct. Biol. 4, 36–39 (1997).

    Article  CAS  Google Scholar 

  21. Neier, R. Chemical synthesis of porphobilinogen and studies of its biosynthesis. Adv. Nitrogen Heterocycles 2, 35–146 (1996).

    Article  CAS  Google Scholar 

  22. Wetmur, J.G. et al. Human 5-aminolevulinate dehydratase: nucleotide sequence of a full length cDNA clone. Proc. Natl. Acad. Sci. USA. 83, 7703–7707 (1986).

    Article  CAS  Google Scholar 

  23. Wetmur, J.G. et al. Molecular characterisation of the human 5-aminolevulinate dehydratase 2 (ALAD2) allele: implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am. J. Hum. Genet. 49, 757–763 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishida, N. et al. Cloning and expression of the defective genes from a patient with 5-aminolevulinate dehydratase porphyria. J. Clin. Invest. 89, 1431–1437 (1992).

    Article  CAS  Google Scholar 

  25. Plewinska, M. et al. 5-Aminolevulinate dehydratase deficient porphyria: identification of the molecular lesions in a severely affected homozygote. Am. J. Hum. Genet. 49, 167–174 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brennan, M.J.W. & Cantrill, R.C. 5-Aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature 280, 514–515 (1979).

    Article  CAS  Google Scholar 

  27. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    Article  CAS  Google Scholar 

  28. Senior, N. et al. Comparative studies of the 5-aminolevulinic acid dehydratase from P. sativum, E. coli and S. cerevisiae. Biochem. J. 320, 401–412 (1996).

    Article  CAS  Google Scholar 

  29. Erskine, P.T. et al. Crystallisation of 5-aminolaevulinic acid dehydratase from Escherichia coli and Saccharomyces cerevisiae and preliminary X-ray characterisation of the crystals. Prot. Sci. 6, 1–3. (1997).

    Article  Google Scholar 

  30. CCP4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  31. Jones, T.A. et al. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  32. Kraulis, P.J. MOLSCRIPT: a program to produce detailed and schematic plots of protein structure. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Evans, S.V. Setor - hardware lighted 3-dimensional solid model representations of macromolecules. J. Mol. Graphics. 11, 134 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erskine, P., Senior, N., Awan, S. et al. X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nat Struct Mol Biol 4, 1025–1031 (1997). https://doi.org/10.1038/nsb1297-1025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1297-1025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing