Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Protein tyrosine phosphatases take off

Protein tyrosine phosphatases (PTPs) are a family of signal transduction enzymes that dephosphorylate phosphotyrosine containing proteins. Structural and kinetic studies provide a molecular understanding of how these enzymes regulate a wide range of intracellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Johnson, L.N. & Barford, D. The effects of phosphorylation on the structure and function of proteins. A. Rev. Biophys. biomolec. Struct. 22, 199–232 (1993).

    Article  CAS  Google Scholar 

  2. Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signalling. Cell 80, 225–236 (1995).

    Article  CAS  Google Scholar 

  3. Cohen, P. The structure and regulation of protein phosphatases. A. Rev. Biochem. 58, 453–508 (1989).

    Article  CAS  Google Scholar 

  4. Cohen, P. Nomenclature and chromosomal localization of human protein serine/threonine phosphatase genes. Adv. prot. Phosphatases 8, 371–376 (1994).

    CAS  Google Scholar 

  5. Tonks, N.K. Protein tyrosine phosphatases. Semin. Cell Biol. 4, 373–453 (1993).

    Article  CAS  Google Scholar 

  6. Walton, K.M. & Dixon, J.E. Protein tyrosine phosphatases. A. Rev. Biochem. 62, 101–120 (1993).

    Article  CAS  Google Scholar 

  7. Charbonneau, H. & Tonks, N.K. 1002 protein phosphatases? A. Rev. Cell Biol. 8, 463–493 (1992).

    Article  CAS  Google Scholar 

  8. Guan, K.L. & Dixon, J.E. Evidence of protein tyrosine catalysis proceeding via a cysteine-phosphate intermediate. J. biol. Chem. 266, 17026–17030 (1991).

    CAS  Google Scholar 

  9. Pot, D.A., Woodford, T.A., Remboutsika, E., Haun, R.S. & Dixon, J.E. Cloning, bacterial expression, purification, and characterization of the cytoplasmic domain of rat LAR, a receptor-like protein tyrosine phosphatase. J. biol. Chem. 266, 19688–19696 (1991).

    CAS  PubMed  Google Scholar 

  10. Cho, H. et al. Isolation and structural elucidation of a novel phosphocysteine intermediate in the LAR protein tyrosine phosphatase enzymatic pathway. J. Am. Chem. Soc. 114, 7296–7298 (1992).

    Article  CAS  Google Scholar 

  11. Trowbridge, I.S. & Thomas, M.L. CD45: An emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. A. Rev. Immunol. 12, 85–116 (1994).

    Article  CAS  Google Scholar 

  12. Zheng, X.M., Wang, Y. & Pallen, C.J. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359, 336–339 (1992).

    Article  CAS  Google Scholar 

  13. den Hertog, J. et al. Receptor protein tyrosine phosphatase a acyivates pp60c-src and is involved in neuronal differentiation. EMBO J. 12, 3789–3798 (1993).

    Article  CAS  Google Scholar 

  14. Brady-Kalnay, S.M., Flint, A.J. & Tonks, N.K. Homophilic binding of PTPm, a receptor-type protein tyrosine phosphatase, can mediate cell-cell aggregation. J. cell. Biol. 122, 961–972 (1993).

    Article  CAS  Google Scholar 

  15. Sap, J., Jiang, Y.-P., Friedlander, D., Grumet, M. & Schlessinger, J. Receptor tyrosine phosphatase PTP-k mediates homolphilic binding. Molec. cell Biol. 14, 19 (1994).

    Article  Google Scholar 

  16. Brady-Kalnay, S.M., Rimm, D.L. & Tonks, N.K. Receptor protein tyrosine phosphatase PTPm associates with cadherins and catenins in vitro. J. Cell Biol. 130, 977–986 (1995).

    Article  CAS  Google Scholar 

  17. Peles, E. et al. The carbonic anhydrase domain of receptor tyrosine phosphatase b is a functional ligand for the axonal cell recognition molecule contactin. Cell 82, 251–260 (1995).

    Article  CAS  Google Scholar 

  18. Barnea, G. et al. Receptor tyrosine phosphatase b is expressed in the form of proteoglycan and binds to the extracellular matrix protein Tenascin. J. biol. Chem. 269, 14349–14352 (1994).

    CAS  Google Scholar 

  19. Maurel, P., Rauch, U., Flad, M., Margolis, R.K. & Margolis, R.U. Phosphacan, a chondroitin sulphateproteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc. natn. Acad. Sci. U.S.A. 91, 2512–2516 (1994).

    Article  CAS  Google Scholar 

  20. Sgroi, D., Koretzky, G.A. & Stamenkovic, I. Regulation of CD45 engagement by the B-cell receptor CD22. Proc. natn. Acad. Sci. U.S.A. 92, 4026–4030 (1995).

    Article  CAS  Google Scholar 

  21. Kishihara, K. et al. Normal B lymphocyte but impaired T cell maturation in CD45-exon protein tyrosine phosphatase-deficient mice. Cell 74, 143–156 (1993).

    Article  CAS  Google Scholar 

  22. Neel, B.G. Structure and function of SH2-domain containing tyrosine phosphatase. Cell Biol. 4, 419–432 (1993).

    CAS  Google Scholar 

  23. Klingmuller, U., Lorenz, U., Cantley, L.C., Neel, B.G. & Lodish, H.F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729–738 (1995).

    Article  CAS  Google Scholar 

  24. D'Ambrosio, D. et al. (1995) Recruitment & activation of PTP1C in negative regulation of antigen receptor signalling by FCgRIIBL Science 268, 293–297 (1995).

    Article  CAS  Google Scholar 

  25. Li, W. et al A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Molec. cell. Biol. 14, 509–517 (1994).

    Article  CAS  Google Scholar 

  26. Millar, J.B., McGowan, C.H., Lenaers, G., Jones, R. & Russell, P. p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. EMBO J. 10, 4301–4309 (1991).

    Article  CAS  Google Scholar 

  27. Sun, H., & Tonks, N.K. The coordinated action of protein tyrosine phosphatases and kinases in cell signalling. Trends biochem Sci. 19, 480–485 (1994).

    Article  CAS  Google Scholar 

  28. Mondesert, O., Moreno, S. & Russell, P. Low molecular weight protein tyrosine phosphatases are highly conserved between fission yeast and man. J. biol. Chem. 269, 27996–27999 (1993).

    Google Scholar 

  29. Ruggiero, M. et al. Negative growth control by a novel Mr phosphotyrosine protein phosphatase in normal and transformed cells. FEBS Lett. 326, 294–298 (1993).

    Article  CAS  Google Scholar 

  30. Barford, D., Flint, A.J., Tonks, N.K. The crystal structure of human protein tyrosine phosphatase 1B. Science 263, 1397–1404 (1994).

    Article  CAS  Google Scholar 

  31. Jia, Z., Barford, D., Flint, A.J. & Tonks, N.K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268, 1754–1758 (1995).

    Article  CAS  Google Scholar 

  32. Stuckley, J.A. et al. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 and the complex with tungstate. Nature 370, 571–575 (1994).

    Article  Google Scholar 

  33. Schubert, H.L., Fauman, E.B., Stuckey, J.A., Dixon, J.E. & Saper, M.A. A ligand-induced conformational change in the Yersinia protein tyrosine phosphatase. Prot. Sci. 4, 1904–11105 (1995).

    Article  CAS  Google Scholar 

  34. Su, X.-D., Taddei, N., Stefani, M., Ramponi, G. & Nordlund, P. The crystal structure of a low-molecular weight phosphotyrosine protein phosphatase. Nature 370, 575–578 (1994).

    Article  CAS  Google Scholar 

  35. Zhang, M., Van Etten, R.L. & Stauffacher, C.V. Crystal structure of bovine heart phosphotyrosyl phosphatase at 2.2 resolution. Biochemistry 33, 11097–11105 (1994).

    Article  CAS  Google Scholar 

  36. Zhang, Z.-Y., Wang, Y., Dixon, J.E. Dissecting the catalytic mechanism of protein tyrosine phosphatases. Proc. natn. Acad. Sci. U.S.A. 91, 1624–1628 (1994).

    Article  CAS  Google Scholar 

  37. Zhang, Z.-Y. & Dixon, J.E. Active site labelling of the Yersinia Protein Tyrosine phosphatase: The determination of the pKa of the active site cysteine and the function of the conserved histidine 402. Biochemistry 32, 9340–9345 (1993).

    Article  CAS  Google Scholar 

  38. Denu, J.M., Zhou, G., Guo, Y. & Dixon, J.E. The catalytic role of Aspartate-92 in a Human Dual-Specific Protein-Tyrosine-Phosphatase. Biochemistry 34, 3396–3403 (1995).

    Article  CAS  Google Scholar 

  39. Zhang, Z.Y. et al. (1994c) The Cys(X)5Arg catalytic motif in phosphoester hydrolysis. Biochemistry 33, 15266–15270 (1994).

    Article  CAS  Google Scholar 

  40. Waksman, G. et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358, 646–653 (1992).

    Article  CAS  Google Scholar 

  41. Waksman, G., Shoelson, S.E., Pant, N., Cowburn, D. & Kuriyan, J. Binding of a high affinity phosphotyrosyl peptide to the src SH2 domain: Crystal structures of the complexed and peptide-free forms. Cell 72, 779–790 (1992).

    Article  Google Scholar 

  42. Hubbard, S.R., Wei, L., Ellis, L. & Hendrickson, W.A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    Article  CAS  Google Scholar 

  43. Eck, M., Shoelson, S.E. & Harrison, S.C. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362, 87–91 (1993).

    Article  CAS  Google Scholar 

  44. Zhang, Z.-Y. Are protein tyrosine phosphatases specific for phosphotyrosine? J. biol. Chem. 270, 16052–16059 (1995).

    CAS  PubMed  Google Scholar 

  45. Tonks, N.K., Diltz, C.D. & Fischer, E.H. Characterization of the major protein tyrosine phosphatases of human placenta. J. biol. Chem. 263, 6731–6737 (1988).

    CAS  PubMed  Google Scholar 

  46. Zhang, Z.-Y. et al. Substrate specificity of the protein tyrosine phosphatases. Proc. natn. Acad. Sci. U.S.A. 90, 4446–4450 (1994).

    Article  Google Scholar 

  47. Zhang, Z.Y., Maclean, D., McNamara, D.J., Sawyer, T.K. & Dixon, J.E. Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Biochemistry 33, 2285–2290 (1994).

    Article  CAS  Google Scholar 

  48. Cho, H. et al. Substrate specificities of catalytic fragments of protein tyrosine phosphatases (HPTPb, LAR, and CD45) toward phosphotyrosylpeptide substrates and thiophosphotyrosylated peptides as inhibitors. Prot. Sci. 2, 977–984 (1993).

    Article  CAS  Google Scholar 

  49. Hippen, K.L. et al. Acidic residues are involved in substrate regognition by two soluble protein tyrosine phosphatases, PTP-5 and rrbPTP-1. Biochemistry 32, 12405–12412 (1993).

    Article  CAS  Google Scholar 

  50. Ruzzene, M. et al. Specificity of T-cell protein tyrosine phosphatase toward phosphorylated synthetic peptides. Eur. J. Biochem. 211, 289–295 (1993).

    Article  CAS  Google Scholar 

  51. Pinna, L.A. & Donella-Deana, A. Phosphorylated synthetic peptides as tools for studying protein phosphatases. Biochim. biophys. Acta. 1222, 415–431 (1994).

    Article  CAS  Google Scholar 

  52. Ladbury, J.E. et al. Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: A reappraisal. Proc. natn. Acad. Sci. U.S.A. 92, 3199–3203 (1995).

    Article  CAS  Google Scholar 

  53. Knighton, D.E. et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 414–420 (1991).

    Article  CAS  Google Scholar 

  54. Taylor, S.S. & Radzio-Andzelm, E. Three protein kinase structures define a common motif. Structure 2, 345–355 (1994).

    Article  CAS  Google Scholar 

  55. Streuli, M., Kreuger, N.X., Thai, T., Tang, M. & Saito, H. Distinct functional roles of the two intracelular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J. 9, 2399–2407 (1990).

    Article  CAS  Google Scholar 

  56. Johnson, P.H.L., Ostergaard, L., Wasden, C. & Trowbridge, I.S. Mutational analysis of CD45J. J. biol. Chem. 267, 8035–8041 (1992).

    CAS  PubMed  Google Scholar 

  57. Tan, X., Stover, D.R. & Walsh, K.A. Demonstration of protein tyrosine phosphatsse activity in the second of two homologous domains of CD45. J. biol. Chem. 268, 6835–6838 (1993).

    CAS  PubMed  Google Scholar 

  58. Stover, D.R. & Walsh, K.A. Protein tyrosine phosphatase activity of CD45 is activated by sequential phosphorylation by two kinases. Molec. cell. Biol. 14, 5523–5532 (1994).

    Article  CAS  Google Scholar 

  59. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  60. Sonygang, Z. et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4, 973–982 (1994).

    Article  Google Scholar 

  61. Songyang, Z. et al. Catalytic specificity of protein tyrosine kinases is critical for selective signalling. Nature 373, 536–539 (1994).

    Article  Google Scholar 

  62. Pearson, R.B., Kemp, B.E. Protein kinase phosphorylation sites sequences and consensus specificity motifs:Tabulations. Meth. Enzymol. 200, 62–143 (1991).

    Article  CAS  Google Scholar 

  63. Bossemeyer, D., Engh, R.A., Kinzel, V., Ponstingl, H. & Huber, R. (1993) Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart deduced from the 2.0 structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 12, 849–859 (1993).

    Article  CAS  Google Scholar 

  64. Stern, L.J. & Wiley, D.C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2, 245–251 (1994).

    Article  CAS  Google Scholar 

  65. Lee, C.-H. et al. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Structure 2, 423–438 (1994).

    Article  CAS  Google Scholar 

  66. Mauro, L.J. & Dixon, J.E. ‘Zip codes’ direct intracellulat protein tyrosine phosphatases to the correct cellular ‘addresses’. Trends biochem. Sci. 19, 151–155 (1994).

    Article  CAS  Google Scholar 

  67. Zhou, G., Denu, J.M., Wu, L. & Dixon, J.E. The catalytic role of Cys 124 in the dual specificity phosphatase VHR. J. biol. Chem. 269, 28084–28090 (1994).

    CAS  PubMed  Google Scholar 

  68. Denu, J.M. & Dixon, J.E. A catalytic mechanism for the dual-specific phosphatases. Proc. natn. Acad. Sci. U.S.A. 92, 5910–5914 (1994).

    Article  Google Scholar 

  69. Zhang, Z.-Y., Malachowski, W.P., Van Etten, R. & Dixon, J.E. Nature of the rate-determining steps of the reaction catalysed by the Yersinia Protein Tyrosine Phosphatase. J. biol. Chem. 269, 8140–8145 (1994).

    CAS  PubMed  Google Scholar 

  70. Zhang, Z.-Y. Kinetic and mechanistic characterization of a mammalian protein tyrosine phosphatase, PTP1. J. biol. Chem. 270, 11199–11204 (1995).

    Article  CAS  Google Scholar 

  71. Sun, H., Charles, C.H., Lau, L.F. & Tonks, N.K. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP Kinase in vivo. Cell 75, 487–493 (1993).

    Article  CAS  Google Scholar 

  72. Cirri, P. et al. The role of Cys 12, Cys 17 and Arg 18 in the catalytic mechnism of low Mr cytosolic phosphotyrosine protein phosphatases. Eur. J. Biochem. 214, 647–657 (1993).

    Article  CAS  Google Scholar 

  73. Davis, J.P., Zhou, M.-M., & Van Etten, R. Kinetic and site-directed mutageneis studies of the Cysteine residues of bovine low molecular weight phosphotyrosyl protein phosphatases. J. biol. Chem. 269, 8734–8740 (1994).

    CAS  PubMed  Google Scholar 

  74. Taddei, N. et al. Aspartic-129 is an essential residue in the catalytic mechanism of the low Mr phosphotyrosine protein phosphatase. FEBS Lett. 350, 328–332 (1994).

    Article  CAS  Google Scholar 

  75. Zhang, Z., Harms, E., Van Etten, R.L. Asp 129 of low molecular weight protein tyrosine phosphatase is involved in leaving group protonation. J. biol. Chem. 269, 25947 (1994).

    CAS  PubMed  Google Scholar 

  76. Barton, G.J. & Sternberg, M.J.E. A strategy for the rapid mutiple alignment of protein sequences. J. molec. Biol. 198, 327–337 (1987).

    Article  CAS  Google Scholar 

  77. Livingstone, C.D. & Barton, G.J. Protein sequence alignments: a strategy for the hierarchial analysis of residue conservation. Comput. Applic. Biosci. 9, 745–756 (1993).

    CAS  Google Scholar 

  78. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Engng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  79. Evans, S.V. SETOR: hardware lighted three-dimensional solid model representation of macromolecules. J. molec. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  80. Nicholls, A. & Honig, B. A rapid finite difference alogorithm utilising successive over relaxation to solve the Poisson-Boltzman equation. J. comput. Chem. 12, 435–445 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barford, D., Jia, Z. & Tonks, N. Protein tyrosine phosphatases take off. Nat Struct Mol Biol 2, 1043–1053 (1995). https://doi.org/10.1038/nsb1295-1043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1295-1043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing