Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of the recognition of the Dishevelled DEP domain in the Wnt signaling pathway

Abstract

The DEP domain of Dishevelled (Dvl) proteins transduces signals to effector proteins downstream of Dvl in the Wnt pathway. Here we report that DEP-containing mutants inhibit Wnt-induced, but not Dvl-induced, activation of the transcription factor Lef-1. This inhibitory effect is weakened by a K434M mutation. Nuclear magnetic resonance spectroscopy revealed that the DEP domain of mouse Dvl1 comprises a three-helix bundle, a β-hairpin `arm' and two short β-strands at the C-terminal region. Lys 434 is located at the tip of the β-hairpin `arm'. Based on our findings, we conclude that DEP interacts with regulators upstream of Dvl via a strong electric dipole on the molecule's surface created by Lys 434, Asp 445 and Asp 448; the electric dipole and the putative membrane binding site are at two different locations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based amino acid sequence alignment of selected DEP domains.
Figure 2: Effect of Dvl C-terminal region on Lef-1 activation.
Figure 3: Solution structure of the DEP domain of mDvl1.
Figure 4: The hydrophobic core of the DEP domain.
Figure 5: Surface potential of the DEP domain.
Figure 6: Mutagenesis study of DvlC1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Brown, J.D. & Moon, R.T. Wnt signaling: why is everything so negative? Curr. Opin. Cell Biol. 10, 182–187 (1998).

    Article  CAS  Google Scholar 

  2. Dale, T.C. Signal transduction by the Wnt family of ligands. Biochem. J. 329, 209–223 (1998).

    Article  CAS  Google Scholar 

  3. Dierick, H. & Bejsovec, A. Cellular mechanisms of wingless/Wnt signal transduction. Curr. Top. Dev. Biol. 43, 153–190 (1999).

    Article  CAS  Google Scholar 

  4. Nusse, R. WNT targets. Repression and activation. Trends Genet. 15, 1–3 (1999).

    Article  CAS  Google Scholar 

  5. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998).

    Article  CAS  Google Scholar 

  6. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  7. He H.C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  8. Wieschaus, E., Nusslein-Volhard, C. & Kluding, H. Kruppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev. Biol. 104, 172–186 (1984).

    Article  CAS  Google Scholar 

  9. Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J. & Nusse, R. The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev. 9, 1087–1097 (1995).

    Article  CAS  Google Scholar 

  10. Li, L. et al. Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J. Biol. Chem. 274, 129–134 (1999).

    Article  CAS  Google Scholar 

  11. Tomlinson, A., Strapps, W.R. & Heemskerk, J. Linking Frizzled and Wnt signaling in Drosophila development. Development 124, 4515–4521 (1997).

    CAS  PubMed  Google Scholar 

  12. Park, M., Wu, X., Golden, K., Axelrod, J.D. & Bodmer, R. The wingless signaling pathway is directly involved in Drosophila heart development. Dev. Biol. 177, 104–116 (1996).

    Article  CAS  Google Scholar 

  13. Farr, G.H., III et al. Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J. Cell Biol. 148, 691–702 (2000).

    Article  CAS  Google Scholar 

  14. Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta- dependent phosphorylation of beta-catenin. EMBO J. 17, 1371–1384 (1998).

    Article  CAS  Google Scholar 

  15. Itoh, K., Antipova, A., Ratcliffe, M.J. & Sokol, S. Interaction of Dishevelled and Xenopus axin-related protein is required for Wnt signal transduction. Mol. Cell Biol. 20, 2228–2238 (2000).

    Article  CAS  Google Scholar 

  16. Li, L. et al. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt- mediated regulation of LEF-1. EMBO J. 18, 4233–4240 (1999).

    Article  CAS  Google Scholar 

  17. Smalley, M.J. et al. Interaction of axin and dvl-2 proteins regulates dvl-2-stimulated TCF-dependent transcription. EMBO J. 18, 2823–2835 (1999).

    Article  CAS  Google Scholar 

  18. Yuan, H., Mao, J., Li, L. & Wu, D. Suppression of glycogen synthase kinase activity is not sufficient for leukemia enhancer factor-1 activation. J. Biol. Chem. 274, 30419–30423 (1999).

    Article  CAS  Google Scholar 

  19. Theisen, H. et al. Dishevelled is required during wingless signaling to establish both cell polarity and cell identity. Development 120, 347–360 (1994).

    CAS  PubMed  Google Scholar 

  20. Heisenberg, C.P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    Article  CAS  Google Scholar 

  21. Wallingford, J.B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  Google Scholar 

  22. Boutros, M., Paricio, N., Strutt, D.I. & Mlodzik, M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94, 109–118 (1998).

    Article  CAS  Google Scholar 

  23. Boutros, M. & Mlodzik, M. Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech. Dev. 83, 27–37 (1999).

    Article  CAS  Google Scholar 

  24. Ponting, C.P. & Bork, P. Pleckstrin's repeat performance: a novel domain in G-protein signaling? Trends Biochem. Sci. 21, 245–246 (1996).

    Article  CAS  Google Scholar 

  25. Kharrat, A. et al. Conformational stability studies of the pleckstrin DEP domain: definition of the domain boundaries. Biochim. Biophys. Acta 1385, 157–164 (1998).

    Article  CAS  Google Scholar 

  26. Zheng, J. et al. The solution structure of the pleckstrin homology domain of human SOS1. A possible structural role for the sequential association of diffuse B cell lymphoma and pleckstrin homology domains. J. Biol. Chem. 272, 30340–30344 (1997).

    Article  CAS  Google Scholar 

  27. Zheng, J. et al. Identification of the binding site for acidic phospholipids on the pH domain of dynamin: implications for stimulation of GTPase activity. J. Mol. Biol. 255, 14–21 (1996).

    Article  CAS  Google Scholar 

  28. Hsu, S.C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol. Cell Biol. 18, 4807–4818 (1998).

    Article  CAS  Google Scholar 

  29. Sakanaka, C., Weiss, J.B. & Williams, L.T. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc. Natl. Acad. Sci. USA 95, 3020–3023 (1998).

    Article  CAS  Google Scholar 

  30. Fushman, D. et al. The solution structure and dynamics of the pleckstrin homology domain of G protein-coupled receptor kinase 2 (beta-adrenergic receptor kinase 1). A binding partner of Gbetagamma subunits. J. Biol. Chem. 273, 2835–2843 (1998).

    Article  CAS  Google Scholar 

  31. Guntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  CAS  Google Scholar 

  32. Rothbacher, U. et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J. 19, 1010–1022 (2000).

    Article  CAS  Google Scholar 

  33. Axelrod, J.D., Miller, J.R., Shulman, J.M., Moon, R.T. & Perrimon, N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 12, 2610–2622 (1998).

    Article  CAS  Google Scholar 

  34. Koelle, M.R. & Horvitz, H.R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125 (1996).

    Article  CAS  Google Scholar 

  35. Murray, D. et al. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys. J. 77, 3176–3188 (1999).

    Article  CAS  Google Scholar 

  36. Gelb, M.H., Cho, W. & Wilton, D.C. Interfacial binding of secreted phospholipases A(2): more than electrostatics and a major role for tryptophan. Curr. Opin. Struct. Biol. 9, 428–432 (1999).

    Article  CAS  Google Scholar 

  37. Sheinerman, F.B., Norel, R. & Honig, B. Electrostatic aspects of protein–protein interactions. Curr. Opin. Struct. Biol. 10, 153–159 (2000).

    Article  CAS  Google Scholar 

  38. Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144–1149 (1995).

    Article  CAS  Google Scholar 

  39. Semenov, M.V. & Snyder, M. Human dishevelled genes constitute a DHR-containing multigene family. Genomics 42, 302–310 (1997).

    Article  CAS  Google Scholar 

  40. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  41. Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  CAS  Google Scholar 

  42. Belikov, S. & Karpov, V. Linker histones: paradigm lost but questions remain. FEBS Lett. 441, 161–164 (1998).

    Article  CAS  Google Scholar 

  43. Krasnow, R.E., Wong, L.L. & Adler, P.N. Dishevelled is a component of the frizzled signaling pathway in Drosophila. Development 121, 4095–4102 (1995).

    CAS  PubMed  Google Scholar 

  44. Clore, G.M. & Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).

    Article  CAS  Google Scholar 

  45. Matsuo, H., Kupce, E., Li, H. & Wagner, G. Increased sensitivity in HNCA and HN(CO)CA experiments by selective C beta decoupling. J. Magn. Reson. B 113, 91–96 (1996).

    Article  CAS  Google Scholar 

  46. Kay, L.E. & Bax, A. New methods for the measurement of NH-CαH coupling constants in 15N-labeled proteins. J. Magn. Res. 86, 110–126 (1990).

    CAS  Google Scholar 

  47. Xia, T.-H., Bartels, C. & Wüthrich, K. XEASY, ETH automated spectroscopy for X window system, user mannal (ETH-Honggerberg, Zurich; 1993).

    Google Scholar 

  48. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–32 (1996).

    Article  CAS  Google Scholar 

  49. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of proteins. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  50. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  51. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the American Lebanese Syrian Associated Charities to, by a Cancer Center (CORE) support grant from the National Cancer Institute and by a research grant from the National Institute of General Medical Science. We thank S. White and D. Cowburn for critical reading and comments on the manuscript; P. Mehta for help with data base searching and protein sequence analysis; J. Cay Jones, A. McArthur, C. Ross, and F. Witte for scientific editing. J.T.N is a trainee of the professional oncology program (POE) at St. Jude, and was funded by the National Cancer Institute and American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, H., Mao, J., Nguyen, J. et al. Structural basis of the recognition of the Dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Mol Biol 7, 1178–1184 (2000). https://doi.org/10.1038/82047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing