Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of ribosome anti-association factor IF6

Abstract

Ribosome anti-association factor eIF6 (originally named according to translation initiation terminology as eukaryotic initiation factor 6) binds to the large ribosomal subunit, thereby preventing inappropriate interactions with the small subunit during initiation of protein synthesis. We have determined the X-ray structures of two IF6 homologs, Methanococcus jannaschii archaeal aIF6 and Sacchromyces cerevisiae eIF6, revealing a phylogenetically conserved 25 kDa protein consisting of five quasi identical α/β subdomains arrayed about a five-fold axis of pseudosymmetry. Yeast eIF6 prevents ribosomal subunit association. Comparative protein structure modeling with other known archaeal and eukaryotic homologs demonstrated the presence of two conserved surface regions, one or both of which may bind the large ribosomal subunit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: eIF6 and aIF6 sequence alignments.
Figure 2: Yeast eIF6(1–224) prevents association of yeast ribosomal subunit.
Figure 3: Stereoview of the experimental electron density for one M. jannaschii aIF6 subdomain.
Figure 4: Pentein structures of aIF6 and eIF6.
Figure 5: Two perpendicular views of aIF6 subdomain B.
Figure 6: Sequence alignments of the M. jannaschii aIF6 subdomains.
Figure 7: Molecular surfaces of aIF6 and eIF6.
Figure 8: Perpendicular views of the water-filled hollow of aIF6.

Similar content being viewed by others

References

  1. Pestova, T.V. & Hellen, C.U. Ribosome recruitment and scanning: what's new? Trends Biochem. Sci. 24, 85–87 (1999).

    Article  CAS  Google Scholar 

  2. Trachsel, H., Erni, B., Schreier, M.H. & Staehelin, T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116, 755–767 (1977).

    Article  CAS  Google Scholar 

  3. Russell, D.W. & Spremulli, L.L. Mechanism of action of the wheat germ ribosome dissociation factor: interaction with the 60 S subunit. Arch. Biochem. Biophys. 201, 518–526 (1980).

    Article  CAS  Google Scholar 

  4. Russell, D.W. & Spremulli, L.L. Purification and characterization of a ribosome dissociation factor (eukaryotic initiation factor 6) from wheat germ. J. Biol. Chem. 254, 8796–8800 (1979).

    CAS  PubMed  Google Scholar 

  5. Valenzuela, D.M., Chaudhuri, A. & Maitra, U. Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of Mr = 25,500 (eukaryotic initiation factor 6). J. Biol. Chem. 257, 7712–7719 (1982).

    CAS  PubMed  Google Scholar 

  6. Raychaudhuri, P., Stringer, E.A., Valenzuela, D.M. & Maitra, U. Ribosomal subunit antiassociation activity in rabbit reticulocyte lysates. Evidence for a low molecular weight ribosomal subunit antiassociation protein factor (Mr = 25,000). J. Biol. Chem. 259, 11930–11935 (1984).

    CAS  PubMed  Google Scholar 

  7. Si, K., Chaudhuri, J., Chevesich, J. & Maitra, U. Molecular cloning and functional expression of a human cDNA encoding translation initiation factor 6. Proc. Natl. Acad. Sci. USA 94, 14285–14290 (1997).

    Article  CAS  Google Scholar 

  8. Si, K. & Maitra, U. The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol. Cell. Biol. 19, 1416–1426 (1999).

    Article  CAS  Google Scholar 

  9. Wood, L.C., Ashby, M.N., Grunfeld, C. & Feingold, K.R. Cloning of murine translation initiation factor 6 and functional analysis of the homologous sequence YPR016c in Saccharomyces cerevisiae. J. Biol. Chem. 274, 11653–11659 (1999).

    Article  CAS  Google Scholar 

  10. Sanvito, F. et al. The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J. Cell. Biol. 144, 823–837 (1999).

    Article  CAS  Google Scholar 

  11. Sander, C. & Schneider, R. Database of homology-derived protein structures and structural meaning of sequence alignment. Proteins 9, 56–68 (1991).

    Article  CAS  Google Scholar 

  12. Altmann, M., Sonenberg, N. & Trachsel, H. Translation in Saccharomyces cerevisiae: initiation factor 4E-dependent cell-free system. Mol. Cell. Biol. 9, 4467–4472 (1989).

    Article  CAS  Google Scholar 

  13. Blum, S., Mueller, M., Schmid, S.R., Linder, P. & Trachsel, H. Translation in Saccharomyces cerevisiae: initiation factor 4A-dependent cell-free system. Proc. Natl. Acad. Sci. USA 86, 6043–6046 (1989).

    Article  CAS  Google Scholar 

  14. Biffo, S. et al. Isolation of a novel beta4 integrin-binding protein (p27(BBP)) highly expressed in epithelial cells. J. Biol. Chem. 272, 30314–30321 (1997).

    Article  CAS  Google Scholar 

  15. Sanvito, F. et al. Expression of a highly conserved protein, p27BBP, during the progression of human colorectal cancer. Cancer Res. 60, 510–516 (2000).

    CAS  PubMed  Google Scholar 

  16. de Pereda, J.M., Wiche, G. & Liddington, R.C. Crystal structure of a tandem pair of fibronectin type III domains from the cytoplasmic tail of integrin alpha6beta4. EMBO J. 18, 4087–4095 (1999).

    Article  CAS  Google Scholar 

  17. Burley, S.K. et al. Structural genomics: beyond the human genome project. Nature Genet. 23, 151–157 (1999).

    Article  CAS  Google Scholar 

  18. Hendrickson, W. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  19. Holm, L. & Sander, C. A review of the use of protein structure comparison in protein classification and function identification. Science 273, 595–602 (1996).

    Article  CAS  Google Scholar 

  20. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  21. Lang, D., Thoma, R., Henn-Sax, M., Sterner, R. & Wilmanns, M. Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289, 1546–1550 (2000).

    Article  CAS  Google Scholar 

  22. Fulop, V. & Jones, D.T. Beta propellers: structural rigidity and functional diversity. Curr. Opin. Struct. Biol. 9, 715–721 (1999).

    Article  CAS  Google Scholar 

  23. Sprague, E.R., Redd, M.J., Johnson, A.D. & Wolberger, C. Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J. 19, 3016–3027 (2000).

    Article  CAS  Google Scholar 

  24. Sanchez, R. et al. MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res. 28, 250–253 (2000).

    Article  CAS  Google Scholar 

  25. Sanchez, R. & Sali, A. Comparative protein structure modeling in genomics. J. Comp. Phys. 151, 388–401 (1999).

    Article  CAS  Google Scholar 

  26. Nikolov, D.B. et al. Crystal structure of TFIID TATA-box binding protein. Nature 360, 40–46 (1992).

    Article  CAS  Google Scholar 

  27. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  28. Conte, L.L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  Google Scholar 

  29. Wall, M.A. et al. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 1047–1058 (1995).

    Article  CAS  Google Scholar 

  30. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278, 2123–2126 (1997).

    Article  CAS  Google Scholar 

  31. Bult, C.J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. Proceedings of the Daresbury CCP4 study weekend (1991).

    Google Scholar 

  34. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  35. Brünger, A. et al. Crystallography and NMR system: a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  36. Sheldrick, G.M. Isomorphous replacement and anomalous scattering. In Proc. CCP4 Study Weekend (eds, Wolf, W., Evans, P.R. & Leslie, A.G.W.) 23–28 (Daresbury Laboratory, Warrington, UK; 1991).

    Google Scholar 

  37. Laskowski, R.J., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

  38. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  39. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D 49, 129–149 (1993).

    Article  CAS  Google Scholar 

  40. Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992).

    Article  CAS  Google Scholar 

  41. Gilson, M., Sharp, K. & Honig, B. Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comput. Chem. 9, 327–335 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

At the Brookhaven National Laboratory National Synchrotron Light Source, we thank Z. Dauter and K. R. Rajashankar for their help using beamline X9B. We thank G. Blobel, J. Bonanno, B.T. Chait, M.R. Chance, J. DeAngelis, R.C. Deo, M. Henderson, V. Ilyin, D. Jeruzalmi, J. Kuriyan, C. Kielkopf, C. Lima, J. Marcotrigiano, F. Melo, S. Nair, U. Pieper, G.A. Petsko, S.S. Ray, R. Sanchez, L. Shapiro, F.W. Studier, S. Swaminathan, R.M. Sweet, and W.B. Whitman for many useful discussions. We thank G. He for technical help and T. Niven for editorial assistance. S.K.B. is a member of the Howard Hughes Medical Institute. This work was supported by National Institutes of Health Grants (S.K.B. and A.S.), and by The Rockefeller University (C.M.G.). A.S. is an Alfred P. Sloan Research Fellow and an Irma T. Hirschl Trust Career Scientist, and is also support by The Merck Genome Research Institute, G. Harold and Leila Y. Mathers Charitable Foundation, and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. Burley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groft, C., Beckmann, R., Sali, A. et al. Crystal structures of ribosome anti-association factor IF6. Nat Struct Mol Biol 7, 1156–1164 (2000). https://doi.org/10.1038/82017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing