Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structural basis for red fluorescence in the tetrameric GFP homolog DsRed

Abstract

Green fluorescent protein (GFP) has rapidly become a standard tool for investigating a variety of cellular activities, and has served as a model system for understanding spectral tuning in chromophoric proteins. Distant homologs of GFP in reef coral and anemone display two new properties of the fluorescent protein family: dramatically red-shifted spectra, and oligomerization to form tetramers. We now report the 1.9 Å crystal structure of DsRed, a red fluorescent protein from Discosoma coral. DsRed monomers show similar topology to GFP, but additional chemical modification to the chromophore extends the conjugated π-system and likely accounts for the red-shifted spectra. Oligomerization of DsRed occurs at two chemically distinct protein interfaces to assemble the tetramer. The DsRed structure reveals the chemical basis for the functional properties of red fluorescent proteins and provides the basis for rational engineering of this subfamily of GFP homologs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of DsRed.
Figure 2: The chromophore structure of DsRed.
Figure 3: Stereoview of the DsRed oligomerization interfaces.
Figure 4: Structure-based sequence alignment of fluorescent protein family.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Matz, M.V. et al. Nature Biotechnol. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  2. Fradkov, A.F. et al. FEBS Lett. 479, 127–130 (2000).

    Article  CAS  Google Scholar 

  3. Lukyanov, K.A. et al. J. Biol. Chem. 275, 25879–25882 (2000).

    Article  CAS  Google Scholar 

  4. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. & Cormier, M.J. Gene 111, 229–233 (1992).

    Article  CAS  Google Scholar 

  5. Tsien, R.Y. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  6. Heim, R., Prasher, D.C. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  Google Scholar 

  7. Kneen, M., Farinas, J., Li, Y. & Verkman, A.S. Biophys. J. 74, 1591–1599 (1998).

    Article  CAS  Google Scholar 

  8. Miyawaki, A. et al. Nature 388, 882–7 (1997).

    Article  CAS  Google Scholar 

  9. Romoser, V.A., Hinkle, P.M. & Persechini, A. J. Biol. Chem. 272, 13270–12374 (1997).

    Article  CAS  Google Scholar 

  10. Waldo, G.S., Standish, B.M., Berendzen, J. & Terwilliger, T.C. Nature Biotechnol. 17, 691–695 (1999).

    Article  CAS  Google Scholar 

  11. Heim, R., Cubitt, A.B. & Tsien, R.Y. Nature 373, 663–664 (1995).

    Article  CAS  Google Scholar 

  12. Chattoraj, M., King, B.A., Bublitz, G.U. & Boxer, S.G. Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).

    Article  CAS  Google Scholar 

  13. Ormö, M. et al. Science 273, 1392–1395 (1996).

    Article  Google Scholar 

  14. Kroon, A.R. et al. J. Biol. Chem. 271, 31949–31956 (1996).

    Article  CAS  Google Scholar 

  15. Kochendoerfer, G.G., Lin, S.W., Sakmar, T.P. & Mathies, R.A. Trends Biochem. Sci. 24, 300–305 (1999).

    Article  CAS  Google Scholar 

  16. Cubitt, A.B., Woollenweber, L.A. & Heim, R. Methods Cell Biol. 58, 19–30 (1999).

    Article  CAS  Google Scholar 

  17. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 97, 11990–11995 (2000).

    Article  CAS  Google Scholar 

  18. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  19. Baird, G.S., Zacharias, D.A. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 97, 11984–11989 (2000).

    Article  CAS  Google Scholar 

  20. Heikal, A.A., Hess, S.T., Baird, G.S., Tsien, R.Y. & Webb, W.W. Proc. Natl. Acad. Sci. USA 97, 11996–12001 (2000).

    Article  CAS  Google Scholar 

  21. Bublitz, G., King, B.A. & Boxer, S.G. J. Am. Chem. Soc. 120, 9370–9371 (1998).

    Article  CAS  Google Scholar 

  22. Cubitt, A.B. et al. Trends Biochem Sci 20, 448–455 (1995).

    Article  CAS  Google Scholar 

  23. Reid, B.G. & Flynn, G.C. Biochemistry 36, 6786–6791 (1997).

    Article  CAS  Google Scholar 

  24. Yang, F., Moss, L.G. & Phillips, G.N., Jr. Nature Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  25. Drakenberg, T. & Forsén, S. J. Chem. Soc. Chem. Commun., 1404–1405 (1971).

  26. Radzicka, A., Pedersen, L. & Wolfenden, R. Biochemistry 27, 4538–4541 (1988).

    Article  CAS  Google Scholar 

  27. Jabs, A., Weiss, M.S. & Hilgenfeld, R. J. Mol. Biol. 286, 291–304 (1999).

    Article  CAS  Google Scholar 

  28. Dominguez, R. et al. Nature Struct. Biol. 2, 569–576 (1995).

    Article  CAS  Google Scholar 

  29. Perrakis, A. et al. Structure 2, 1169–1180 (1994).

    Article  CAS  Google Scholar 

  30. Sakon, J., Adney, W.S., Himmel, M.E., Thomas, S.R. & Karplus, P.A. Biochemistry 35, 10648–10660 (1996).

    Article  CAS  Google Scholar 

  31. Varghese, J.N. et al. Proc. Natl. Acad. Sci. USA 91, 2785–2789 (1994).

    Article  CAS  Google Scholar 

  32. Hennig, M. et al. FEBS Lett 306, 80–84 (1992).

    Article  CAS  Google Scholar 

  33. Wiesmann, C., Beste, G., Hengstenberg, W. & Schulz, G.E. Structure 3, 961–968 (1995).

    Article  CAS  Google Scholar 

  34. Van Roey, P., Rao, V., Plummer, T.H., Jr. & Tarentino, A.L. Biochemistry 33, 13989–13996 (1994).

    Article  CAS  Google Scholar 

  35. Terwisscha van Scheltinga, A.C., Hennig, M. & Dijkstra, B.W. J. Mol. Biol. 262, 243–257 (1996).

    Article  CAS  Google Scholar 

  36. Perricaudet, M. & Pullman, A. Int. J. Pept. Protein Res. 5, 99–107 (1973).

    Article  CAS  Google Scholar 

  37. Fersht, A.R. J. Am. Chem. Soc. 93, 3504–3515 (1971).

    Article  CAS  Google Scholar 

  38. Haupts, U., Maiti, S., Schwille, P. & Webb, W.W. Proc. Natl. Acad. Sci. USA 95, 13573–13578 (1998).

    Article  CAS  Google Scholar 

  39. Clackson, T. & Wells, J.A. Science 267, 383–386 (1995).

    Article  CAS  Google Scholar 

  40. Kreusch, A., Pfaffinger, P.J., Stevens, C.F. & Choe, S. Nature 392, 945–948 (1998).

    Article  CAS  Google Scholar 

  41. Bixby, K.A. et al. Nature Struct, Biol, 6, 38–43 (1999).

    Article  CAS  Google Scholar 

  42. Stewart, R. in The Proton: Applications to organic chemistry 228–234 (Academic Press, Orlando, Florida; 1985).

    Google Scholar 

  43. Doublie, S. Methods Enzymol. 276, 523–530 (1997).

    Article  CAS  Google Scholar 

  44. Otwinowski, Z. In Data collection and processing (ed. Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (, SERC Laboratory, Warrington, UK; 1993).

    Google Scholar 

  45. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Acta Crystallogr A 47, 110–119 (1991).

    Article  Google Scholar 

  46. Brunger, A.T. Nature 355, 472–474 (1992).

    Article  CAS  Google Scholar 

  47. Rice, L.M. & Brunger, A.T. Proteins 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  48. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  49. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Z. Otwinowski for SeMet data collection and initial processing, H. Lee for help preparing crystallization and heavy-atom soak trials, R. Jain, S. Lockless, and M. Machius for insightful discussions, and J. Remington and R. Tsien for communication of data prior to publication. This work was partially supported by a grant from the Robert A. Welch Foundation to R.R., who is also a recipient of the Burroughs-Wellcome Fund New Investigator Award in the Basic Pharmacological Sciences, and is an Assistant Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Ranganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wall, M., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Mol Biol 7, 1133–1138 (2000). https://doi.org/10.1038/81992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing