Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved

Abstract

The protein engineering analysis of the α-spectrin SH3 domain at three different stability conditions (pH 7.0, 3.5 and 2.5) reveals a folding transition state structured around the distal loop β-hairpin and the 310-helix. This region is impervious to overall changes in protein stability, suggesting a transition state ensemble with little conformational variability. Comparison with the Src SH3 domain (36% sequence homology) indicates that the transition state in this protein family may be conserved. Discrepancies at some positions can be rationalized in terms of the different interactions made by the different side chains in both domains. Brønsted plot analysis confirms the φ‡-U results and shows two folding subdomains for this small protein. These results, together with previous data on circular permutants of the α-spectrin SH3 domain, indicate that polypeptide topology and chain connectivity play a major role in the folding reaction of this protein family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and structure comparison of the Src and α-spectrin SH3 domains showing the residues mutated in both proteins.
Figure 2: Analysis of the α-spectrin SH3 domain transition state.
Figure 3: Comparison between the φ‡-U values for equivalent mutations in the WT α-spectrin at pH 3.

Similar content being viewed by others

References

  1. Mirny, L.A., Abkevich, V.I. & Shakhnovich, E.I. Proc. Natl. Acad. Sci. USA 95, 4976–4981 (1998).

    Article  CAS  Google Scholar 

  2. Michnick, S.W. & Shakhnovich, E. Folding & Design 3, 239–251 (1998).

    Article  CAS  Google Scholar 

  3. Plaxco, K.W., Simons, K.T. & Baker, D. J. Mol. Biol. 277, 985– 994 (1998).

    Article  CAS  Google Scholar 

  4. Shakhnovich, E. Folding & Design 3, R108–R111 (1998).

    Article  CAS  Google Scholar 

  5. Thirumalai, D. & Klimov, D.K. Folding & Design 3, R112–R118. (1998).

    Article  CAS  Google Scholar 

  6. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Nature Struct. Biol. 5, 721– 729 (1998).

    Article  CAS  Google Scholar 

  7. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. & Saraste, M. Nature 359, 851– 855 (1992).

    Article  CAS  Google Scholar 

  8. Blanco, F.J., Ortiz, A.R. & Serrano, L. J. Biomol. NMR 9, 347– 357 (1997).

    Article  CAS  Google Scholar 

  9. Viguera, A.R., Martinez, J.C., Filimonov, V.V., Mateo, P.L. & Serrano, L. Biochemistry 33, 2142–2150 (1994).

    Article  CAS  Google Scholar 

  10. Viguera, A.R., Blanco, F.J. & Serrano, L. J. Mol. Biol. 247, 670– 681 (1995).

    CAS  Google Scholar 

  11. Viguera, A.R., Serrano, L. & Wilmanns, M. Nature Struct. Biol. 3, 874– 880 (1996).

    Article  CAS  Google Scholar 

  12. Viguera, A.R. & Serrano, L. Nature Struct. Biol. 4, 939–946 (1997).

    Article  CAS  Google Scholar 

  13. Grantcharova, V.P., Riddle, D.S., Santiago, J.V. & Baker, D. Nature Struct. Biol. 5, 714–720 (1998).

    Article  CAS  Google Scholar 

  14. Fersht, A.R. Curr. Opin. Struct. Biol. 5, 79–84 (1995).

    Article  CAS  Google Scholar 

  15. Fersht, A.R., Itzhaki, L.S., elMasry, N.F., Matthews, J.M. & Otzen, D.E. Proc. Natl. Acad. Sci. USA 91, 10426–10429 (1994).

    Article  CAS  Google Scholar 

  16. Riddle D.S. et al. Nature Struct. Biol. 6, 1016– 1024 (1999).

    Article  CAS  Google Scholar 

  17. Chiti, F., et al. Nature Struct. Biol. 6, 1005– 1009 (1999).

    Article  CAS  Google Scholar 

  18. Villegas, V., Martinez, J.C., Avilés, F.X. & Serrano, L. J. Mol. Biol. 283, 1027–36 (1998).

    Article  CAS  Google Scholar 

  19. Kunkel, T.A. . Proc. Natl. Acad. Sci. USA 82, 488– 492 (1985).

    Article  CAS  Google Scholar 

  20. Gill, S.C. & Hippel, P.H. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  21. Prieto, J., Wilmans, M., Jimenez, M.A., Rico, M. & Serrano, L. J. Mol. Biol. 268, 760–778 (1997).

    Article  CAS  Google Scholar 

  22. Johnson, C.M. & Fersht, A.R. Biochemistry 34, 6795–6804 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C.M. acknowledges European Union for financial support by a postdoctoral TMR fellowship. This project has been partly financed by an EU network grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Serrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, J., Serrano, L. The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. Nat Struct Mol Biol 6, 1010–1016 (1999). https://doi.org/10.1038/14896

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing