Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An antagonist peptide–EPO receptor complex suggests that receptor dimerization is not sufficient for activation

Abstract

Dimerization of the erythropoietin (EPO) receptor (EPOR), in the presence of either natural (EPO) or synthetic (EPO-mimetic peptides, EMPs) ligands is the principal extracellular event that leads to receptor activation. The crystal structure of the extracellular domain of EPOR bound to an inactive (antagonist) peptide at 2.7 Å resolution has unexpectedly revealed that dimerization still occurs, but the orientation between receptor molecules is altered relative to active (agonist) peptide complexes. Comparison of the biological properties of agonist and antagonist EMPs with EPO suggests that the extracellular domain orientation is tightly coupled to the cytoplasmic signaling events and, hence, provides valuable new insights into the design of synthetic ligands for EPOR and other cytokine receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptor cross linking and dimerization analysis.
Figure 2: Bioactivity of EMP1 and EMP33 a, Ligand-induced protein tyrosine phosphorylation.
Figure 3: Activation of signaling through native and chimeric EPOR.
Figure 4: Identification of EMP33 as an antagonist of the EPOR.
Figure 5: Superposition of an active and inactive EPOR assembly.
Figure 6: Stereo representation of the superposition between the two EMP33 peptides in EBP–EMP33 complex structure.
Figure 7: The hydrophobic interaction surface between EBP and EMP peptides.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Watowich, S.S., Hilton, D.J. & Lodish, H.F. Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol. Cell. Biol. 14, 3535–3549 (1994).

    Article  CAS  Google Scholar 

  2. Blau, C.A., Peterson, K.R., Drachman, J.G. & Spencer, D.M. A proliferation switch for genetically modified cells. Proc. Natl. Acad. Sci. USA 94, 3076–3081 (1997).

    Article  CAS  Google Scholar 

  3. Livnah, O. et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 Å. Science 273 , 464–471 (1996).

    Article  CAS  Google Scholar 

  4. Boissel, J.-P., Lee, W.-R., Presnell, S.R., Cohen, F.E. & Bunn, H.F. Erythropoietin structure-function relationships-mutant proteins that test a model of tertiary structure. J. Biol. Chem. 268, 15983–15993 (1993).

    CAS  PubMed  Google Scholar 

  5. de Vos, A.M., Ultsch, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  Google Scholar 

  6. Wrighton, N.C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458– 463 (1996).

    Article  CAS  Google Scholar 

  7. Johnson, D.L. et al. Amino-terminal dimerization of an erythropoietin mimetic peptide results in increased erythropoietic activity. Chem. Biol. 4, 939–950 ( 1997).

    Article  CAS  Google Scholar 

  8. Wrighton, N.C. et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nature Biotech. 15, 1261–1265 (1997).

    Article  CAS  Google Scholar 

  9. Johnson, D.L. et al. Identification of a 13 amino acid peptide mimetic of erythropoietin and description of amino acids critical for the mimetic activity of EMP1. Biochemistry 37, 3699– 3710 (1998).

    Article  CAS  Google Scholar 

  10. Ihle, J.N., Witthuhn, B.A., Quelle, F.W., Yamamoto, K. & Silvennoinen, O. Signaling through the receptors. Ann. Rev. Immun. 13, 369– 398 (1995).

    Article  CAS  Google Scholar 

  11. Lai, S.Y. et al. Interleukin-4-specific signal transduction events are driven by homotypic interactions of the interleukin-4 receptor alpha subunit. EMBO J. 15, 4506–4514 ( 1996).

    Article  CAS  Google Scholar 

  12. Lai, S.Y. et al. The molecular role of the common gamma c subunit in signal transduction reveals functional asymmetry within multimeric cytokine receptor complexes. Proc. Natl. Acad. Sci. USA 93, 231–235 (1996).

    Article  CAS  Google Scholar 

  13. Lai, S.Y., Molden, J. & Goldsmith, M.A. Shared gamma(c) subunit within the human interleukin-7 receptor complex. A molecular basis for the pathogenesis of X-linked severe combined immunodeficiency. J. Clin. Invest. 99, 169–177 (1997).

    Article  CAS  Google Scholar 

  14. Muthukumaran, G., Kotenko, S., Donnelly, R., Ihle, J.N. & Pestka, S. Chimeric erythropoietin-interferon gamma receptors reveal differences in functional architecture of intracellular domains for signal transduction. J. Biol. Chem. 272 , 4993–4999 (1997).

    Article  CAS  Google Scholar 

  15. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  16. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).

    CAS  PubMed  Google Scholar 

  17. Wojchowski, D.M. & He, T.C. Signal transduction in the erythropoietin receptor system. Stem Cells 11 , 381–392 (1993).

    Article  CAS  Google Scholar 

  18. Heldin, C.-H. Dimerization of cell surface receptors in signal transduction. Cell 80, 213–223 ( 1995).

    Article  CAS  Google Scholar 

  19. Elliott, S., Lorenzini, T., Yanagihara, D., Chang, D. & Elliott, G. Activation of the erythropoietin (EPO) receptor by bivalent anti-EPO receptor antibodies. J. Biol. Chem. 271, 24691–24697 ( 1996).

    Article  CAS  Google Scholar 

  20. Schneider, H. et al. Homodimerization of erythropoietin receptor by a bivalent monoclonal antibody triggers cell proliferation and differentiation of erythroid precursors. Blood 89, 473– 482 (1997).

    CAS  PubMed  Google Scholar 

  21. Huber, R., Deisenhofer, J., Colman, P.M., Matsushima, M. & Palm, W. Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature 264, 415–420 (1976).

    Article  CAS  Google Scholar 

  22. Harris, L.J. et al. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360, 369– 372 (1992).

    Article  CAS  Google Scholar 

  23. Ohashi, H., Maruyama, K.K., Liu, Y.C. & Yoshimura, A. Ligand-induced activation of chimeric receptors between the erythropoietin receptor and receptor tyrosine kinases. Proc. Natl. Acad. Sci. USA 91, 158–162 ( 1994).

    Article  CAS  Google Scholar 

  24. Maruyama, K., Miyata, K. & Yoshimura, A. Proliferation and erythroid differentiation through the cytoplasmic domain of the erythropoietin receptor. J. Biol. Chem. 269, 5976–5980 ( 1994).

    CAS  PubMed  Google Scholar 

  25. Boni-Schnetzler, M., Scott, W., Waugh, S.M., DiBella, E. & Pilch, P.F. The insulin receptor. Structural basis for high affinity ligand binding. J. Biol. Chem. 262, 8395 –8401 (1987).

    CAS  PubMed  Google Scholar 

  26. Lee, J.T., O'Hare, T., Pilch, P.F. & Shoelson, S.E. Insulin receptor autophosphorylation occurs asymmetrically. J. Biol. Chem. 268, 4092–4098 (1993).

    CAS  PubMed  Google Scholar 

  27. Dong, Y.J. & Goldwasser, E. Evidence for an accessory component that increases the affinity of the erythropoietin receptor. Exp. Hematol. 21, 483–486 ( 1993).

    CAS  PubMed  Google Scholar 

  28. Johnson, D.L. et al. Refolding, purification and characterization of human erythropoietin binding protein produced in E. coli. Prot. Express. Purif. 7, 104–113 (1996).

    Article  CAS  Google Scholar 

  29. Carroll, M.P. et al. Erythropoietin induces Raf-1 activation and Raf-1 is required for erythropoietin induced proliferation. J. Biol. Chem. 266, 14964–14969 (1991).

    CAS  PubMed  Google Scholar 

  30. Goldsmith, M.A., Xu, W., Amaral, M.C., Kuczek, E.S. & Greene, W.C. The cytoplasmic domain of the interleukin-2 receptor beta chain contains both unique and functionally redundant signal transduction elements. J. Biol. Chem. 269, 14698– 14704 (1994).

    CAS  PubMed  Google Scholar 

  31. Dexter, T.M., Garland, J., Scott, D., Scolnick, E. & Metcalf, D. Growth of factor-dependent hemopoietic precursor cell lines. J. Exp. Med. 152, 1036– 1047 (1980).

    Article  CAS  Google Scholar 

  32. Soh, J. et al. Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor. Cell 76, 793–802 (1994).

    Article  CAS  Google Scholar 

  33. Gaffen, S.L. et al. Signaling through the interleukin 2 receptor beta chain activates a Stat-5-like DNA-binding activity. Proc. Natl. Acad. Sci. USA 92, 7192–7196 ( 1995).

    Article  CAS  Google Scholar 

  34. Kotenko, S.V. et al. Interaction between the components of the interferon gamma receptor complex. J. Biol. Chem. 270, 20915 –20921 (1995).

    Article  CAS  Google Scholar 

  35. Stura, E.A. et al. Preliminary crystallographic investigations of glycinamide ribonucleotide transformylase. J. Biol. Chem. 264, 9703–9706 (1989).

    CAS  PubMed  Google Scholar 

  36. Stura, E.A. & Wilson, I.A. The streak seeding technique in protein crystallization. J. Cryst. Growth 110, 270–282 (1991).

    Article  CAS  Google Scholar 

  37. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. Oscillation Data Reduction Program. In Proceedings of the CCP4 Study Weekend (eds. Sawyer, L., Isaacs, N. & Bailey, S.) 56 -62 (SERC Daresbury Laboratory, Daresbury, England, 1993).

    Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Meth. Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  40. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 ( 1994).

    Article  CAS  Google Scholar 

  41. Brünger, A.T. X-PLOR, Version 3.1: A system for X-ray and NMR. 3.1.1 edn (Yale University Press, New Haven, CT, 1992).

    Google Scholar 

  42. Jiang, J.S. & Brunger, A.T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100 –115 (1994).

    Article  CAS  Google Scholar 

  43. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  44. Syed, R.S. et al. Efficiency of signaling through cytokine receptors depends critically on receptor orientation. Nature 395, 511–516 (1998).

    Article  CAS  Google Scholar 

  45. Cheetham, J.C. et al. NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nature Struct. Biol. 5, 861–866 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH (I.A.W., M.A.G. and S.P.), and a New Jersey State Commission on Cancer Research grant (C.D.K.). O. L. was supported by a Rueff-Wormser postdoctoral fellowship and K.D.L. was supported by the N.I.H. Medical Scientist Training Program and the Program in Biological Sciences at U.C.S.F. We thank J. Tullai and F. McMahon for technical assistance, K. Hoey for peptide synthesis, H. Lashuel and J. Kelly for peptide ultracentrifugation and R.M. Stroud, J.A. Wells, S.L. Schreiber and D.C. Wiley for helpful discussions. This is publication 11174-MB from the Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linda K. Jolliffe or Ian A. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livnah, O., Johnson, D., Stura, E. et al. An antagonist peptide–EPO receptor complex suggests that receptor dimerization is not sufficient for activation. Nat Struct Mol Biol 5, 993–1004 (1998). https://doi.org/10.1038/2965

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing