Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structures of a series of RNA aptamers complexed to the same protein target

Abstract

We have determined the crystal structures, at 2.8 Å resolution, of two different RNA aptamers, each bound to MS2 coat protein. One of the aptamers contains a non-Watson-Crick base pair, while the other is missing one of the unpaired adenines that make sequence-specific contacts in the wild-type complex. Despite these differences, the RNA aptamers bind in the same location on the protein as the wild-type translational operator. Comparison of these new structures with other MS2-RNA complexes allows us to refine further the definition of the minimal recognition elements and suggests a possible application of the MS2 system for routine structure determination of small nucleic acid motifs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structures of RNA stem-loops that bind to MS2 coat protein.
Figure 2: Overall structure of the complexes, generated by superposing the coat protein.
Figure 4: Schematic diagram of the potential protein-RNA hydrogen bonds, where atoms separated by 3.3 Å or less are considered to be within hydrogen-bonding distance.
Figure 3: Close up of the GA non-Watson-Crick base pair in the F5 aptamer complex structure with the final aptamer model in all-atom representation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cusack, S. Nature Struct. Biology 2, 824–831 (1995).

    Article  CAS  Google Scholar 

  2. Nagai, K. Curr. Op. Struc. Biol. 6, 53–61 (1996).

    Article  CAS  Google Scholar 

  3. Uhlenbeck, O.C., Pardi, A. & Feigon, J. Cell 90, 833–840 (1997).

    Article  CAS  Google Scholar 

  4. Convery, M.A. et al. Nature Struct. Biology 5, 133– 139 (1998).

    Article  CAS  Google Scholar 

  5. Valegård, K., Murray, J.B., Stockley, P.G., Stonehouse, N.J. & Liljas, L. Nature 371, 623–626 (1994).

    Article  Google Scholar 

  6. Valegård, K., et al. J. Mol. Biol. 270, 724– 738 (1997).

    Article  Google Scholar 

  7. Witherell, G.W., Gott, J.M. & Uhlenbeck, O.C. Prog. Nuc. Acid Res. 40, 185 –220 (1991).

    Article  CAS  Google Scholar 

  8. Stockley, P.G., et al. Nucleic Acids Res. 23, 2512– 2518 (1995).

    Article  CAS  Google Scholar 

  9. Romaniuk, P.J., Lowary, P., Wu, H.N., Stormo, G. & Uhlenbeck, O.C. Biochemistry 26, 1563– 1568 (1987).

    Article  CAS  Google Scholar 

  10. Patel, D.J., et al. J. Mol. Biol. 272, 645– 664 (1997).

    Article  CAS  Google Scholar 

  11. Jaeger, J.A., Turner, D.H. & Zuker, M. Meth. Enzymol. 183, 281– 306 (1989).

    Article  Google Scholar 

  12. Schneider, D., Tuerk, C. & Gold, L. J. Mol. Biol. 228, 862–869 (1992).

    Article  CAS  Google Scholar 

  13. Scott, W.G., Finch, J.T. & Klug, A. Cell 81, 991–1002 (1995).

    Article  CAS  Google Scholar 

  14. Cate, J.H., et al. Science 273, 1678– 1685 (1996).

    Article  CAS  Google Scholar 

  15. Yoshizawa, S., Kawai, G., Watanabe, K., Miura, K. & Hirao I. Biochemistry 36, 4761–4767 (1997).

    Article  CAS  Google Scholar 

  16. Leonard, G.A., et al. Structure 2, 483–494 (1994).

    Article  CAS  Google Scholar 

  17. Wu, H.N. & Uhlenbeck, O.C. Biochemistry 26, 8221–8227 (1987).

    Article  CAS  Google Scholar 

  18. Talbot, S.J., Goodman, S., Bates, S.R.E., Fishwick, C.W.G. & Stockley, P.G. Nucleic Acids Res. 18, 3521–3528 (1990).

    Article  CAS  Google Scholar 

  19. Lago, H., Fonseca, S.A., Murray, J.B., Stonehouse, N.J. & Stockley, P.G. Nucleic Acids Res. 26, 1337–1344 (1998).

    Article  CAS  Google Scholar 

  20. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281– 296 (1991).

    Article  CAS  Google Scholar 

  21. Golmohammadi, R., Valegård, K., Fridborg, K. & Liljas, L. J. Mol. Biol. 234, 620–639 (1993).

    Article  CAS  Google Scholar 

  22. Borer, P.N., et al. Biochemistry 34, 6488– 6503 (1995).

    Article  CAS  Google Scholar 

  23. Uhlenbeck, O.C. Nature Struct. Biology 5, 174–176 (1998).

    Article  CAS  Google Scholar 

  24. Murray, J.B., Collier, A.K. & Arnold, J.R.P. Anal. Biochem. 218, 177– 184 (1994).

    Article  CAS  Google Scholar 

  25. Esnouf, R.M. Journal of Molecular Graphics 15, 133– 138 (1997).

    Google Scholar 

  26. Bacon, D. & Anderson, W.F. Journal of Molecular Graphics 6, 219–220 ( 1988).

    Article  Google Scholar 

  27. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L. Liljas and members of his laboratory at Uppsala University, Sweden, for their assistance over a number of years with the crystallography of phage particles and for comments on the manuscript. We also thank J. Jäger for helpful discussions and S. Fonseca for help with protein purification. This work was supported by grants from the U.K. B.B.S.R.C. and M.R.C., the Wellcome Trust, the Leverhulme Trust and the Howard Hughes Medical Institute. N.J.S. is an M.R.C. fellow.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowsell, S., Stonehouse, N., Convery, M. et al. Crystal structures of a series of RNA aptamers complexed to the same protein target . Nat Struct Mol Biol 5, 970–975 (1998). https://doi.org/10.1038/2946

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing