Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation

An Erratum to this article was published on 01 December 1997

Abstract

Profilin, a ubiquitous low molecular weight (13,000–15,000 Mr) actin binding protein, regulates the formation of F-actin structures in vivo, and is localized to specific cellular regions through interaction with proline-rich sequences. Here we report the 2.2 Å X-ray structure of the complex between human platelet profilin (HPP) and a decamer of L-proline (L-Pro10). The L-Pro10 peptide adopts a left-handed type II poly-L-proline helix (PPM) and binds to a highly conserved patch of aromatic amino acids on the surface of prof ilin. The peptide and actin binding sites reside on orthogonal surfaces, and L-Pro10 binding does not result in a conformational rearrangement of HPP. This structure suggests a mechanism for the localization of prof ilin and its actin-related activities to sites of actin filament assembly in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haarer, B.K. et al. Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J. Cell Biol. 110, 105–114 (1990).

    CAS  PubMed  Google Scholar 

  2. Cooley, L., Verheyen, E. & Ayers, K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69, 173–184 (1992).

    CAS  PubMed  Google Scholar 

  3. Balasubramanian, M.K., Hirani, B.R., Burke, J.D. & Gould, K.L. The Schizosaccharomyces pombe cdc3+ gene encodes a profilin essential for cytokinesis. J. Cell Biol. 125, 1289–1301 (1994).

    CAS  PubMed  Google Scholar 

  4. Finkel, T., Theriot, J.A., Dise, K.R., Tomaselli, G.F. & Goldschmidt-Clermont, P.J. Dynamic actin structures stabilized by profilin. Proc. Natl. Acad. Sci. USA 91, 1510–1514 (1994).

    CAS  PubMed  Google Scholar 

  5. Pollard, T.D. & Cooper, J.A. Actin and actin binding proteins. A critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 55, 987–1035 (1986).

    CAS  PubMed  Google Scholar 

  6. Goldschmidt-Clermont, P.J. et al. The control of actin nucleotide exchange by thymosin β-4 and profilin: A potential regulatory mechanism for actin polymerization in cells. Mol. Biol. Cell. 3, 1015–1024 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlier, M.F., Jean, C., Rieger, K.J., Lenfant, M. & Pantaloni, D. Modulation of the interaction between G-actin and thymosin β-4 by the ATP/ADP ratio. Proc. Natl. Acad. Sci. USA. 90, 5034–5038 (1993).

    CAS  PubMed  Google Scholar 

  8. Pantaloni, D. & Carlier, M.F. How profilin promotes actin filament assembly in the presence of thymosin β-4. Cell, 75, 1007–1013 (1993).

    CAS  PubMed  Google Scholar 

  9. Gertler, F.B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    CAS  PubMed  Google Scholar 

  10. Chakraboty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin based cytoskeleton of mamalian cells. EMBO J. 14, 1314–1321 (1995).

    Google Scholar 

  11. Reinhard, M. et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilin. EMBO J. 14, 1583–1589 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Evangalista, M. et al. Bni1p, a yeast Formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science. 276, 118–122 (1997).

    Google Scholar 

  13. Chang, F., Drubin, D. & Nurse, P. cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profiling. J. Cell Biol 137, 169–182 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Petersen, J., Weilguny, D., Egel, R. & Nielsen, O. Characterization of fusl of Schizosaccharomyces pombe: A developmentally controlled function needed for conjugation. Mol Cell Biol 15, 3697–3707 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Manseau, L., Calley, J. & Phan, H. Profilin is required for posterior patterning of the Drosophila oocyte. Development. 122, 2109–2116 (1996).

    CAS  PubMed  Google Scholar 

  17. Marhoul, J.F. & Adams, T.H. Identification of developmental regulatory genes in Aspergillus nidulans by overexpression Genetics 139, 537–547 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan, D.C., Bedford, M.T. & Leder, P. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Petrella, E.C., Machesky, L.M., Kaiser, D.A. & Pollard, T.D. Structural requirements and thermodynamics of the interaction of proline peptides with profilin. Biochemistry 35, 16535–16543 (1996).

    CAS  PubMed  Google Scholar 

  20. Björkegren, C., Rozycki, M., Schutt, C.E., Lindberg, U. & Karlsson, R. Mutagenesis of human profilin locates its poly (L-proline) binding site to a patch of aromatic amino acids. FEBS Lett. 333, 123–126 (1993).

    PubMed  Google Scholar 

  21. Haarer, B., Petzold, A.S. & Brown, S.S. Mutational analysis of yeast profilin. Mol. Cell. Biol. 13, 7864–7873 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaiser, D. & Pollard, T.D. Characterization of actin and poly-L-proline binding sites of Acanthamoeba profilin with monoclonal antibodies and by mutagenesis. J. Mol. Biol. 256, 89–107 (1996).

    CAS  PubMed  Google Scholar 

  23. Metzler, W.J., Bell, A.J., Ernst, E., Lavoie, T.B. & Mueller, L. Identification of the poly-L-proline binding site on human profilin. J. Biol. Chem. 269, 4620–4625 (1994).

    CAS  PubMed  Google Scholar 

  24. Archer, S.J., Vinson, V.K., Pollard, T.D. & Torchia, D.A. Elucidation of the poly-L-proline binding site in Acanthamoeba profilin I by NMR spectroscopy. FEBS Lett. 337, 145–151 (1994).

    CAS  PubMed  Google Scholar 

  25. Perelroizen, I., Marchand, J., Blanchoin, L., Didry, D. & Carlier, M.F. Interaction of profilin with G-actin and poly-L-proline. Biochemistry 33, 8472–8478 (1994).

    CAS  PubMed  Google Scholar 

  26. Schutt, C.E., Myslik, J.C., Rozycki, M.D., Goonesekere, N.C. & Lindberg, U. The structure of crystalline profilin-β-actin. Nature 365, 810–816 (1993).

    CAS  PubMed  Google Scholar 

  27. Theriot, J., Rosenblatt, J., Portnoy, D., Goldschmidt-Clermont, P.J. & Mitchison, T. Involvement of profilin in the actin based motility of L. monocytogenes in cells and cell free extracts. Cell 76, 505–517 (1994).

    CAS  PubMed  Google Scholar 

  28. Southwick, F. & Purich, D.L. Intracellular pathogenesis of listeriosis. New England J. Med. 334, 770–776 (1996).

    CAS  Google Scholar 

  29. Pollard, T.D. Actin cytoskeleton. Missing link for intracellular bacterial motility? Curr. Biol. 5, 837–840 (1995).

    CAS  PubMed  Google Scholar 

  30. Ren, R., Mayer, B.J., Cichetti, P. & Baltimore, D. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259, 1157–1161 (1993).

    CAS  PubMed  Google Scholar 

  31. Yu, H. et al. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    CAS  PubMed  Google Scholar 

  32. Chen, H.I. & Sudol, M. The WW domain of YES-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. USA 92, 7819–7823 (1995).

    CAS  PubMed  Google Scholar 

  33. Macias, M.I. et al. Structure of the WW domain of a kinase associated protein complexed with a proline-rich peptide. Nature 382, 646–649 (1996).

    CAS  PubMed  Google Scholar 

  34. Sudol, M. Structure and function of the WW domain. Prog. Biophys. Molec. Biol. 65, 113–132 (1996).

    CAS  Google Scholar 

  35. Rabanal, F., Ludeuid, M.D., Pons, M. & Giralt, E. CD of proline-rich polypeptides: application to the study of the repetitive domain of maize glutelin-2. Biopolymers. 33, 1019–1028 (1993).

    CAS  PubMed  Google Scholar 

  36. Williamson, M.P. The structure and function of proline-rich peptides in proteins. Biochem J. 297, 249–260 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Viguera, A.R., Arrondo, J.L.R., Musacchio, A., Saraste, M. & Serrano, L. Characterization of the interaction of natural proline-rich peptides with five different SH3 domains. Biochemistry 33, 10925–10933 (1994).

    CAS  PubMed  Google Scholar 

  38. Flory, P.J. Statistical Mechanics of Chain Molecules (Oxford University Press, New York, 1988).

    Google Scholar 

  39. Jardetzky, T.S. et al. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common polyproline ll-like conformation for bound peptides. Proc. Natl. Acad. Sci. USA 93, 734–738 (1996).

    CAS  PubMed  Google Scholar 

  40. Lim, W.A., Richards, F.M. & Fox, R.O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).

    CAS  PubMed  Google Scholar 

  41. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH-3 ligand interactions. Science 266, 1241–1247 (1994).

    CAS  PubMed  Google Scholar 

  42. Sudol, M. The WW module competes with the SH3 domain? TIBS 21, 161–163 (1996).

    CAS  PubMed  Google Scholar 

  43. Alexandropoulos, K., Cheng, G. & Baltimore, D. Proline-rich sequences that bind to Src homology domains with individual specificities. Proc. Natl. Acad. Sci USA 92, 3110–3114 (1995).

    CAS  PubMed  Google Scholar 

  44. Fedorov, A.A., Pollard, T.D. & Almo, S.C. Purification, characterization and crystallization of human platelet profilin expressed in E. coli . J. Mol. Biol. 241, 480–482 (1994).

    CAS  PubMed  Google Scholar 

  45. Li, E., Locke, B., Yang, N., Ong, D.E. & Gordon, J.I. Characterization of rat cellular retinol-binding protein II expressed in Escherichia coli . J. Biol. Chem. 262, 13773–13779 (1987).

    CAS  PubMed  Google Scholar 

  46. Kabsch, W. Evaluation of single crystal X-ray diffraction data from a position sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    CAS  Google Scholar 

  47. Furey, W. & Swamininthan, S. PHASES- a program package for processing and analysis of diffraction data for macromolecules. Acta Crystallogr. 18, 73 (1990).

    Google Scholar 

  48. Brünger, A.T. X-PLOR (version 3.1) Manual. Yale University, New Haven, CT (1993).

    Google Scholar 

  49. Berne, B. & Pecora, R. Dynamic Light Scatteging. New York, John Wiley and Sons (1976).

  50. Patkowski, A., Seils, J., Buβ, F., Jockusch, B.M. & Dorfmüller, T.H. Size and shape parameter of the actin binding protein profilin in solution: a depolarized and polarized dynamic light scattering study. Biopolymers 30, 219–222 (1990).

    CAS  Google Scholar 

  51. Nicholls, A.J. GRASP manual. Graphical representation and analysis of surface properties. (Columbia University, New York, 1993).

    Google Scholar 

  52. Evans, S.V. SETOR: hardware lighted three dimensional solid model representation of macromolecules J.Mol. Graph. 11, 134–138 (1993).

    CAS  PubMed  Google Scholar 

  53. Fedorov, A.A., Ball, T., Mahoney, N.M., Valenta, R. & Almo, S.C. The molecular basis for allergen cross reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5, 33–45 (1997).

    CAS  PubMed  Google Scholar 

  54. Wu, X. et al. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure 3, 215–226 (1995).

    CAS  PubMed  Google Scholar 

  55. Wishart, D.S., Willard, L., Richards, F.M. & Sykes, B.D. VADAR: A comprehensive program suite for protein structural analysis (http://www.pence.ualberta.ca/mc/bds/vader.html).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahoney, N., Janmey, P. & Almo, S. Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Nat Struct Mol Biol 4, 953–960 (1997). https://doi.org/10.1038/nsb1197-953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1197-953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing