Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system

Abstract

The 4 Å X-ray structure model of trimeric photosystem I of the cyanobacterium Synechococcus elongatus reveals 31 transmembrane, nine surface and three stromal α-helices per monomer, assigned to the 11 protein subunits: PsaA and PsaB are related by a pseudo two-fold axis normal to the membrane plane, along which the electron transfer pigments are arranged. 65 antenna chlorophyll a (Chl a) molecules separated by ≤16 Å form an oval, clustered net, continuous with the electron transfer chain through the second and third Chl a pairs of the electron transfer system. This suggests a dual role for these Chl a both in excitation energy and electron transfer. The architecture of the protein core indicates quinone and iron-sulphur type reaction centres to have a common ancestor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hill, R. & Bendall, F. Function of the two cytochrome components in chloroplasts: A working hypothesis. Nature 186, 136–137 (1960).

    Article  CAS  Google Scholar 

  2. Kok, B. & Hoch, G. in Light and Life (eds W.D. McElroy & B. Glass) 397–405 (John Hopkins Press, 1961).

    Google Scholar 

  3. Duysens, L.N.M., Amesz, J. & Kamp, B.M. Two photochemical systems in photosynthesis. Nature 190, 510–511 (1961).

    Article  CAS  Google Scholar 

  4. Witt, H.T., Müller, A. & Rumberg, B. Experimental evidence for the mechanism of photosynthesis. Nature 191, 194–195 (1961).

    Article  CAS  Google Scholar 

  5. Yu, L., Zhao, J., Mühlenhoff, U., Bryant, D.A. & Golbeck, J.H. PsaE is required for in vivo cyclic electron flow around Photosystem I in the cyanobacerium Synechococcus sp. PCC7002. Plant Physiol. 103, 171–180 (1993).

    Article  CAS  Google Scholar 

  6. Yu, L. et al in Res. Photosynth. Proclnt. Congr. Photosynth. 9th Ed. (Ed. N. Murata) 565–568 (Kluwer, Dordrecht, Netherlands, 1992).

    Google Scholar 

  7. Fork, D.C. & Herbert, S.K. Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. Photosynth. Res. 36 149–168 (1993).

    Article  CAS  Google Scholar 

  8. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618–624 (1985).

    Article  CAS  Google Scholar 

  9. Ermler, U., Fritsch, G., Buchannan, S.K. & Michel, H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2, 925–936 (1994)

    Article  CAS  Google Scholar 

  10. Ducruix, A. & Reiss-Husson, F. Preliminary characterisation by X-ray diffraction of crystals of photochemical reaction centres from wild-type Rhodopseudomonas sphaeroides. J. Mot. Biol. 193, 419–421 (1987).

    Article  CAS  Google Scholar 

  11. Alien, J.P., Feher, G., Yeates, T.O., Komiya, H. & Rees, D.C. Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits. Proc. Natl Acad. Sci. USA 84, 6162–6166 (1987).

    Article  Google Scholar 

  12. Chang, C.H., el-Kabbani, O., Tiede, D., Morris, J. & Schiffer, M. Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30, 5352–5360 (1991).

    Article  CAS  Google Scholar 

  13. Golbeck, J.H. Photosystem I in cyanobacteria. in Molecular Biology of Cyanobacteria, (ed. D.A. Bryant) 179–220 (Kluwer, Dordrecht, 1994).

    Google Scholar 

  14. Chitnis, P.R., Xu, Q., Chitnis, V.P. & Nechushtai, R. Function and organisation of Photosystem I polypeptides. Photosynth. Res. 44, 23–40 (1995).

    Article  CAS  Google Scholar 

  15. Mühlenhoff, U., Haehnel, W., Witt, H. & Herrmann, R.G. Genes encoding eleven subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127, 71–78 (1993).

    Article  Google Scholar 

  16. Hladík, J. & Sofrová, D. Does the trimeric form of the Photosystem 1 reaction center of cyanobacteria in vivo exist? Photosynthesis Research 29, 171–175 (1991).

    PubMed  Google Scholar 

  17. Shubin, V.V., Tsuprun, V.L., Bezsmertnaya, I.N. & Karapetyan, N.B. Trimeric forms of the Photosystem I reaction center complex pre-exits in the membranes of cyanobacterium Spirulina platensis. FEBS Lett. 334, 79–82 (1993).

    Article  CAS  Google Scholar 

  18. Tsiotis, G., Haase, W., Engel, A. & Michel, H. Isolation and structural characterisation of trimeric cyanobacterial Photosystem I complex with the help of recombinant antibody fragments. Eur. J. Biochem. 231, 823–830 (1995).

    Article  CAS  Google Scholar 

  19. Rögner, M., Mühlenhoff, U., Boekema, E.J. & Witt, H.T. Mono-, di-, and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Size, shape and activity. Biochim. Biophys. Acta 1015, 415–424 (1990).

    Article  Google Scholar 

  20. Witt, I. et al. X-ray characterisation of single crystals of the reaction center I of water splitting photosynthesis. Ber. Bunsenges. Phys. Chem. 92, 1503–1506 (1988).

    Article  CAS  Google Scholar 

  21. Witt, H.T., Krauß, N., Hinrichs, W., Witt, I., Fromme, P. & Saenger, W. Three-dimensional crystals of photosystem I from Synechococcus sp. and X-Ray structure analysis at 6 Å resolution., in Research in Photosynthesis., Vol 1 (ed. N. Murata) 521–528 (Kluwer, Dordrecht, 1992).

    Google Scholar 

  22. Krauß, N. et al. Three-dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361, 326–331 (1993).

    Article  Google Scholar 

  23. Schubert, W.-D. et al. Present state of the crystal structure analysis of Photosystem I at 4.5 Å resolution. in Photosynthesis: from Light to Biosphere, 2 (ed. P. Mathis) 3–11 (Kluwer, Dordrecht, 1995).

    Google Scholar 

  24. Richardson, J.S. & Richardson, D.C. Interpretation of electron density maps. Meths Enzymol. 115, 189–206 (1985).

    Article  CAS  Google Scholar 

  25. Adman, E.T., Sieker, L.C. & Jensen, L.H. The structure of Peptococcus aerogenes ferredoxin. Refinement at 2 Å resolution. J. Biol. Chem. 251, 3801–3806 (1976).

    CAS  PubMed  Google Scholar 

  26. Falzone, C.J., Kao, Y.-H., Zhao, J., Bryant, D.A. & Lecomte, J.T.J. Three-dimensional solution structure of PsaE from the cyanobacterium Synechococcus sp. Strain PCC 7002, a Photosystem I protein that shows structural homology with SH3 Domains. Biochemistry 33, 6052–6062 (1994).

    Article  CAS  Google Scholar 

  27. Xu, Q., Chitnis, V.P. & Chitnis, P.R. Structural organization of photosystem I polypeptides in Photosynthesis: from Light to Biosphere. 2 (ed. P. Mathis) 87–90 (Kluwer, Dordrecht, 1995).

    Google Scholar 

  28. Jansson, S. Cross-linking studies of PS I. Plant Physiol. in the press, (1996).

    Google Scholar 

  29. Jekow, P., Fromme, P., Witt, H.T. & Saenger, W. Photosystem I from Synechococcus elongatus: preparation and crystallization of monomers with varying subunit compositions. Biochim. Biophys. Acta 1229, 115–1120 (1995).

    Article  Google Scholar 

  30. Boekema, E.J., Boonstra, A.F., Dekker, J.P. & Rögner, M. Electron microscopic structural analysis of Photosystem I, Photosystem II, and the cytochrome b6/f complex from green plants and cyanobacteria. J. Bioenerg. Biomem. 26, 17–29 (1994).

    Article  CAS  Google Scholar 

  31. Böttcher, B., Gräber, P. & Boekema, E.J. The structure of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. determined by electron microscopy of two-dimensional crystals. Biochim. Biophys. Acta 1100, 125–136 (1992).

    Article  Google Scholar 

  32. Kruip, J., Boekema, E.J., Bald, D., Boonstra, A.F. & Rögner, M. Isolation and Structural Characterisation of Monomeric and Trimeric Photosystem I Complexes (P700.FA/FB and P700.FX) from the Cyanobacterium Synechocystis PCC 6803. J. Biol. Chem. 268, 23353–23360 (1993).

    CAS  PubMed  Google Scholar 

  33. Rodday, S.M., Jun, S.-S. & Biggins, J. Interaction of the FAFB-containing subunit with the Photosystem 1 core heterodimer. Photosynth. Res. 36, 1–9 (1993).

    Article  CAS  Google Scholar 

  34. Chitnis, V.P. et al. Targeted inactivation of the gene psaL encoding a subunit of Photosystem I of the cyanobacterium Synechocystis sp PCC 6803. J. Biol. Chem. 268, 11678–11684 (1993).

    CAS  PubMed  Google Scholar 

  35. Okkels, J.S., Scheller, H.V., Svendsen, I. & Møller, B.L. Isolation and characterization of a cDNA clone encoding an 18-kDa hydrophobic Photosystem I subunit (PSI-L) from barley (Hordeum vulgare L.) J. Biol. Chem. 266, 6767–6773 (1991).

    CAS  PubMed  Google Scholar 

  36. Xu, Q. et al. Mutational analysis of Photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psal reveals the function of Psal in the structural organization of PsaL. J. Biol. Chem. 270, 16243–16250 (1995).

    Article  CAS  Google Scholar 

  37. Franzén, L.-G., Frank, G., Zuber, H. & Rochaix, J.-D. Isolation and characterization of cDNA clones encoding Photosystem I subunits with molecular masses 11.0, 10.0, and 8.4 kDa from Chlamydomonas reinhardtii. Mol. Gen. Genet. 219, 137–144 (1989).

    Article  Google Scholar 

  38. Farah, J., Rappaport, F., Choquet, Y., Joliot, P. & Rochaix, J-D. Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the Photosystem I reaction center is mediated by the PsaF subunit. EMBO J. 14, 4976–4984 (1995).

    Article  CAS  Google Scholar 

  39. Hippler, M., Ratajczak, R. & Haehnel, W. Identification of the plastocyanin-binding subunit of Photosystem I. FEBS Lett. 250, 280–284 (1989).

    Article  CAS  Google Scholar 

  40. Kruip, J. et al. Localization of subunits in PS1, PS2 and in a PS2/Light-Harvesting-Supercomplex. in Photosynthesis: from Light to Biosphere., 3 (ed. P. Mathis) 405–408 (Kluwer, Dordrecht., 1995).

    Google Scholar 

  41. Golbeck, J.H., Parrett, K.G., Mehari, T., Jones, K.L. & Brand, J.J. Isolation of the intact Photosystem I reaction center core containing P700 and iron-sulfur center FX . FEBS Lett. 288, 268–272 (1988).

    Article  Google Scholar 

  42. Rousseau, F. & Lagoutte, B. Evidence for the involvement of PSI-E subunit in the reduction of ferredoxin by Photosystem I. EMBO J. 12, 1755–1765 (1993).

    Article  CAS  Google Scholar 

  43. Høj, P.B., Svendsen, I., Scheller, H.V., Møller, B.L. Identification of a chloroplast-encoded 9-kDa polypeptide as a 2[4Fe-4S] protein carrying centers A and B of Photosystem I. J. Biol. Chem. 262, 12676–12684 (1987).

    PubMed  Google Scholar 

  44. Hayashida, N. et al. The gene for the 9 kDa polypeptide, a possible apoprotein for the iron-sulfur centers A and B of the Photosystem I complex, in tobacco chloroplast DNA. Curr. Genet. 12, 247–250 (1987).

    Article  CAS  Google Scholar 

  45. Oh-oka, H. et al. The 8 kDa polypeptide in Photosystem I is a probable candidate of an iron-sulfur center protein coded by the chloroplast gene frxA. FEBS Lett. 218, 52–54 (1987).

    Article  CAS  Google Scholar 

  46. Kamlowski, A., van der Est, A., Fromme, P. & Stehlik, D. Structural organization of the acceptors A1, FX, FA and FB in Photosystem I from EPR in solution and single crystals in Photosynthesis: from Light to Biosphere. 2 (ed. P. Mathis) 29–34 (Kluwer, Dordrecht, 1995).

    Google Scholar 

  47. Zhao Li, N., Warren, P.V., Golbeck, J.H. & Bryant, D.A. Site-Directed conversion of a cystein to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of Photosystem I. The photoreduction of FA is independent of FB . Biochemistry 31, 5093–5099 (1992).

    Article  Google Scholar 

  48. Käß, H., Bittersmann-Weidlich, E., Andreasson, L.-E., Boenigk, B. & Lubitz, W. ENDOR and ESEEM of the 15N labelled radical cations of chlorophyll a and the primary donor P700 in Photosystem I. Chem. Phys. 194, 419–432 (1995).

    Article  Google Scholar 

  49. Evans, M.C.W., Bratt, P.J., Heathcote, P., Moënne-Loccoz, P., Fourier transform electron spin echo envelope modulation spectroscopy of the 14N primary donors, P700+ and P870+. in Photosynthesis: from Light to Biosphere. Vol. 2 (ed. P. Mathis), 183–186 (Kluwer, Dordrecht, 1995).

  50. Arlt, T. et al. The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis. Proc. Natl. Acad Sci. USA 90, 11757–11761 (1993).

    Article  CAS  Google Scholar 

  51. Brettel, K. New assignment for the 250 μs kinetics in Photosystem I: P-700* recombines with A1 (not FX). Biochim. Biophys. Acta. 576, 246–249 (1989).

    Article  Google Scholar 

  52. Flemming, C. Charakterisierung des Antennensystems von monomeren und trimeren Photosystem I Komplexen. Diploma Thesis, Technische Universität Berlin, 1996.

    Google Scholar 

  53. van Grondelle, R., Energy transfer and trapping in photosynthesis, Biochim. Biophys. Acta. 1187, 1–65, (1994).

    Article  Google Scholar 

  54. Vermaas, W.F.J. Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth. Res. 41, 285–294 (1994).

    Article  CAS  Google Scholar 

  55. Fromme, P., Witt, H.T., Schubert, W.-D., Klukas, O., Saenger, W. & Krauß, N. Structure of Photosystem I at 4.5 Å resolution: A short review including evolutionary aspects. Biochim. Biophys. Acta 1275, 76–83 (1996).

    Article  Google Scholar 

  56. Leslie, A.G.W. in Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography, No. 26, Daresbury Laboratory, Warrington, United Kingdom (1992).

    Google Scholar 

  57. Otwinowski, Z., Oscillation Data Reduction Protgramm, in Proceedings of the CCP4 Study Weekend: Data Collection and Processing (eds L. Sawyer, N. Isaacs, S. Bailey) 56–62 (SERC, Daresbury Laboratory, England, 1993).

    Google Scholar 

  58. CCP4, The Collaborative Computational Project, Number 4. The CCP4 Suite; Programms for Protein Crystallography. Acta Cryst. D50, 760–763 (1994).

  59. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–48 (1994).

  60. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  61. Krabben, L. et al. Site-directed mutations of PsaB for the study of cofactor-protein and protein-protein interaction of Photosystem I. in Photosynthesis: from Light to Biosphere. Vol. 2 (ed. P. Mathis) 123–126 (Kluwer, Dordrecht, 1995).

    Google Scholar 

  62. Margulies, M.M. Sequence similarity between photosystems I and II. Identification of a Photosystem I reaction center transmembrane helix that is similar to transmembrane helix IV of the D2 subunit of Photosystem II and the M subunit of the non-sulfur purple and flexible green bacteria. Photosynth. Res. 29, 133–47 (1991).

    CAS  PubMed  Google Scholar 

  63. Gavel, Y., Steppuhn, J., Herrmann, R.G. & von Heijne, G. The ‘positive-inside rule’ applies to thylakoid membrane proteins. FEBS Lett. 282, 41–16 (1991).

    Article  CAS  Google Scholar 

  64. Vallon, O. & Bogograd, L. Topological study of PSI-A and PSI-B, the large subunits of the Photosystem-l reaction center. Eur. J. Biochem. 214, 907–915 (1993).

    Article  CAS  Google Scholar 

  65. Kraulis, P.K. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauß, N., Schubert, WD., Klukas, O. et al. Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Mol Biol 3, 965–973 (1996). https://doi.org/10.1038/nsb1196-965

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1196-965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing