Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ionization states of the catalytic residues in HIV-1 protease

Abstract

Chemical synthesis was used to prepare the HIV-1 protease specifically 13C-labelled in the catalytically essential Asp 25 in each monomer. The NMR chemical shift of the 13C-enriched homodimeric enzyme was measured in the presence of the inhibitor pepstatin, a mimic of the tetrahedral intermediate formed in enzyme catalysis. In this complex, the catalytic carboxyls do not titrate in the pH range where the enzyme is active; throughout the range pH 2.5–6.5, one Asp 25 side chain is protonated and the other deprotonated. By contrast, in the absence of inhibitor the two Asp side chains are chemically equivalent and both deprotonated at pH 6, the optimum for enzymatic activity. These direct observations of the chemical properties of the catalytic apparatus of the enzyme provide concrete information on which to base the design of improved HIV-1 protease inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ratner, L. et al. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277–284 (1985).

    CAS  Google Scholar 

  2. Oroszlan, S. in Viral Proteinases as Targets For Chemotherapy (Eds H. Kräusslich, S. Oroszlan, E. Wimmer) 87–100 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  3. McQuade, T.J. et al. A synthetic HIV-1 protease inhibitor with antiviral activity arrests HIV-like particle maturation. Science 247, 454–456 (1990).

    Article  CAS  Google Scholar 

  4. Huff, J.R. HIV protease: a novel chemotherapeutic target for AIDS. J. Med. Chem. 34, 2305–2314 (1991).

    Article  CAS  Google Scholar 

  5. Cohen, J. Results on new AIDS drugs bring cautious optimism. Science. 271, 755–756 (1996).

    Article  CAS  Google Scholar 

  6. FDA Press Release (♯95–10), 7 December (1995); and, (♯96–4), 1 March (1996).

  7. Rose, R.E. et al. Human immunodeficiency virus type 1 viral background plays a major role in development of resistance to proteinase inhibitors. Proc. Natl. Acad. Sci. USA 93, 1648–1653 (1996).

    Article  CAS  Google Scholar 

  8. Condra, J.H. et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374, 569–571 (1995).

    Article  CAS  Google Scholar 

  9. Hartsuck, J.A. & Tang, J. The carboxylate ion in the active center of pepsin. J. Biol. Chem. 247, 2575–2580 (1972).

    CAS  PubMed  Google Scholar 

  10. Pearl, L.H. & Taylor, W.R. A structural model for the retroviral proteases. Nature 329, 351–354 (1987).

    Article  CAS  Google Scholar 

  11. Pretsch, E., Clerc, T., Seibl, J. & Simon, W. Spectral Data for Structure Determination of Organic Compounds (Springer-Verlag, Berlin, 1989).

    Book  Google Scholar 

  12. Holladay, M.W., Salituro, F.G. & Rich, D.H. Synthetic and enzyme inhibition studies of pepstatin analogues containing hydroxyethylene and ketomethylene dipeptide isosteres. J. Med. Chem. 30, 374–383 (1987).

    Article  CAS  Google Scholar 

  13. Toth, M.V. & Marshall, G.R. A simple, continuous fluorometric assay for HIV protease. Int. J. Pept. Protein. Res. 36, 544–550 (1990).

    Article  CAS  Google Scholar 

  14. Hyland, L.J., Tomaszek, T.A. & Meek, T.D. Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism. Biochemistry 30, 8454–8463 (1991).

    Article  CAS  Google Scholar 

  15. Furfine, E.S. et al. Two-step binding mechanism for HIV protease inhibitors. Biochemistry 31, 7886–7891 (1992).

    Article  CAS  Google Scholar 

  16. Yamazaki, T. et al. NMR and X-ray evidence that the HIV protease catalytic aspartyl groups are protonated in the complex formed by the protease and a non-peptide cyclic urea-based inhibitor. J. Amer. Chem. Soc. 116, 10791–10792 (1994).

    Article  CAS  Google Scholar 

  17. Fitzgerald, P.M.D. et al. Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-Å resolution. J. Biol. Chem. 265, 14209–14219 (1990).

    CAS  PubMed  Google Scholar 

  18. McDaniel, D.H. & Brown, H.C. Hydrogen bonding as a factor in the ionization of dicarboxylic acids. Science 118, 370–374 (1953).

    Article  CAS  Google Scholar 

  19. Frey, P.A., Whitt, S.A. & Tobin, J.B. A low-barrier hydrogen bond in the catalytic triad of serine proteinases. Science 264, 1927–1930 (1994).

    Article  CAS  Google Scholar 

  20. Marciniszyn, J.A., Hartsuck, J.A. & Tang, J.J. Mode of inhibition of acid proteases by pepstatin. J. Biol. Chem. 251, 7088–7094 (1976).

    CAS  PubMed  Google Scholar 

  21. Marshall, G.R. Structure-activity relations of antagonists of the reninangiotensin system. Fed. Proc. 35, 2494–2501 (1976).

    CAS  PubMed  Google Scholar 

  22. Suguna, K., Padlan, E.A., Smith, C.W., Carlson, W.D. & Davies, D.R. Binding of a reduced bond peptide inhibitor to the aspartic proteinase from rhizopus chinesis: implications for a mechanism of action. Proc. Natl. Acad. Sci. USA 84, 7009–7013 (1987).

    Article  CAS  Google Scholar 

  23. Schnölzer, M. & Kent, S.B.H. Constructing proteins by dovetailing unprotected synthetic peptides: backbone-engineered HIV protease. Science 256, 221–225 (1992).

    Article  Google Scholar 

  24. Tóth, G. & Penke, B. An improved method for the preparation of omega-cyclohexyl esters of aspartic and glutamic acid. Synthesis 361–362 (1992).

    Article  Google Scholar 

  25. Schnölzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S.B.H. In situ neutralization in Boc-chemistry sol id phase peptide synthesis: rapid, high yield assembly of difficult sequences. Int. J. Pept. Protein Res. 40, 180–193 (1992).

    Article  Google Scholar 

  26. Grant, S.K. et al. Use of protein folding studies to determine the conformational and dimer stabilities of HIV-1 and SIV proteases. Biochemistry 31, 9491–9501 (1992).

    Article  CAS  Google Scholar 

  27. Wlodawer, A. et al. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245, 616–621 (1989).

    Article  CAS  Google Scholar 

  28. Mildner, A.M. et al. The HIV-1 protease as enzyme and substrate: mutagenesis of autolysis sites and generation of a stable mutant with retained kinetic properties. Biochemistry 33, 9405–9413 (1994).

    Article  CAS  Google Scholar 

  29. Bergman, D.A. et al. Kinetic properties of HIV-1 protease produced by total chemical synthesis with cysteine residues replaced by isosteric L-α-n-butyric acid. Lett. Pept. Sci. 2, 99–107 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R., Brereton, I., Chai, R. et al. Ionization states of the catalytic residues in HIV-1 protease. Nat Struct Mol Biol 3, 946–950 (1996). https://doi.org/10.1038/nsb1196-946

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1196-946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing