Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of a mammalian PCB-binding protein in complex with a PCB

Abstract

Metabolites of polychlorinated biphenyls (PCBs) bind with high affinity to uteroglobin, a small homodimeric protein that also binds progesterone. We present the solution structure of the reduced form of rat uteroglobin in complex with a PCB methylsulphone, (MeSO2)2-TCB. The structure reveals the molecular basis for the accumulation of (MeSO2)2-TCB by uteroglobin. The structure also shows how ligand binding and release might be controlled by reduction/oxidation of two intermolecular disulphide bonds. Breakage of these bonds induces a local unfolding of the N- and C-termini and a separation of helices creating a channel into the binding site. These effects make the ligand binding cavity readily accessible to entry of the ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Safe, S., Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Envir. Hlth Perspect. 100, 259–268 (1993).

    Article  CAS  Google Scholar 

  2. Brandt, I. et al. Target cells for the polychlorinated biphenyl metabolite 4,4′-bis(methylsulfonyl)-2,2′,5,5′-tetrachlorobiphenyl in lung and kidney. Drug Metab. Disposit. 13, 490–496 (1985).

    CAS  Google Scholar 

  3. Lund, J. et al. Target cells for the polychlorinated biphenyl metabolite 4,4′-bis(methylsulfonyl)-2,2′,5,5′-tetrachlorobiphenyl.Characterization of high affinity binding in rat and mouse lung cytosol. Molec. Pharmacol. 27, 314–323 (1985).

    CAS  Google Scholar 

  4. Gillner, M. et al. The binding of methylsulfonyl-polychloro-biphenyls to uteroglobin. J. Steroid Biochem. 31, 27–33 (1988).

    Article  CAS  Google Scholar 

  5. Brandt, I. & Bergman, Å. Bronchial mucosal and kidney cortex affinity of 4- and 4,4′-substituted sulphur-containing derivatives of 2,2′-5,5′-tetrachlorobiphenyl in mice. Chem. Biol. Interact. 34, 47–55 (1981).

    Article  CAS  Google Scholar 

  6. Lund, J., Devereux, T., Glaumann, H. & Gustafsson, J.-Å. Cellular and subcellular localization of a binding protein for polychlorinated biphenyls in rat lung. Drug Metab. Disposit. 16, 590–599 (1988).

    CAS  Google Scholar 

  7. Lund, J., Nordlund, L. & Gustafsson, J.-A. Partial purification of a binding protein for polychlorinated biphenyls from rat lung cytosol: physicochemical and immunochemical characterization. Biochemistry 27, 7895–7901 (1988).

    Article  CAS  Google Scholar 

  8. Chaloupka, K., Krishnan, V. & Safe, S. Polynuclear aromatic hydrocarbon carcinogens as antiestrogens in MCF-7 human breast cancer cells: role of the Ah receptor. Carcinogenesis 13, 2233–2239 (1992).

    Article  CAS  Google Scholar 

  9. Krishnan, V. & Safe, S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), and dibenzofurans (PCDFs) as antiestrogens in MCF-7 human breast cancer cells: quantitative structure-activity relationships. Toxicology appl. Pharmac. 120, 55–61 (1993).

    Article  CAS  Google Scholar 

  10. Safe, S. Male sexual development in “a sea of oestrogen”. Lancet 342, 125 (1993).

    CAS  PubMed  Google Scholar 

  11. Korach, K.S., Sarver, P., Chae, K., McLachlan, J.A. & McKinney, J.D. Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: conformationally restricted structural probes. Molec. Pharm. 33, 120–126 (1988).

    CAS  PubMed  Google Scholar 

  12. Shigematsu, N. et al. Respiratory involvement in polychorinated biphenyls poisoning. Environ. Res. 16, 92–100 (1978).

    Article  CAS  Google Scholar 

  13. Haraguchi, H., Kuroki, H., Masuda, Y. & Shigematsu, N. Determination of methylthio and methylsulphone polychlorinated biphenyls in tissues of patients with ‘yusho’. Food Chem. Toxicol. 22, 283–288 (1984).

    Article  CAS  Google Scholar 

  14. Morize, I. et al. Refinement of the C 2 2 21 crystal form of oxidized uteroglobin at 1.34 Ångstroms resolution. J. molec. Biol. 194, 725–739 (1987).

    Article  CAS  Google Scholar 

  15. Bally, R. & Delettre, J. Structure and refinement of the oxidized P2 1 form of uteroglobin at 1.64 Ångströms resolution. J. molec. Biol. 206, 153–170 (1989).

    Article  CAS  Google Scholar 

  16. Umland, T.C. et al. Refined structure of rat Clara cell 17 kDa protein at 3.0 Ångströms resolution. J. molec. Biol. 224, 442–448 (1992).

    Article  Google Scholar 

  17. Umland, T.C. et al. Structure of a human Clara cell phospholibid-binding protein-ligand complex at 1.9 Å resolution. Nature struct. Biol. 1, 538–545 (1994).

    Article  CAS  Google Scholar 

  18. Peter, W., Brüller, H.-J., Vriend, G., Beato, M. & Suske, G. Identification of residues essential for progesterone binding to uteroglobin by site-directed mutagenesis. J. Steroid Biochem. 38, 27–33 (1991).

    Article  CAS  Google Scholar 

  19. Dunkel, R., Vriend, G., Beato, M. & Suske, G. Progesterone binding to uteroglobin: two alternative conformations of the ligand. Prot. Engng. 8, 71–79 (1995).

    Article  CAS  Google Scholar 

  20. Peter, W. et al. Interchain cysteine bridges control entry of progesterone to the central cavity of the uteroglobin dimer. Prot Engng. 5, 351–359 (1992).

    Article  CAS  Google Scholar 

  21. Wüthrich, K. NMR of proteins and nucleic acids. (Wiley, New York; 1986).

    Book  Google Scholar 

  22. Roberts, G.C.K. (Ed.), NMR of macromolecules (Oxford University Press; 1993).

    Google Scholar 

  23. Brünger, A. X-PLOR version 3.1. A system for X-ray crystallography and NMR (Yale Univeristy Press; 1992).

    Google Scholar 

  24. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibilities. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  25. Andersson, O., Nordlund-Möller, L., Barnes, H.J. & Lund, J. Heterologous expression of human uteroglobin/polychlorinated biphenyl-binding protein. J. biol. Chem. 269, 19081–19087 (1994).

    CAS  PubMed  Google Scholar 

  26. Nordlund-Möller, L. et al. Cloning, structure and expression of a rat binding protein for polychlorinated biphenyls. J. biol. Chem. 265, 12690–12693 (1990).

    PubMed  Google Scholar 

  27. Klasson Wehler, E., Bergman, Å. & Wachtmeister, C.A. Synthesis of 4,4′-bis([3H]methylsulphonyl)-2,2′ 5,5′-tetrachlorobiphenyl. J. labeled Compd. Radiopharm. 20, 1407–1412 (1983).

    Article  CAS  Google Scholar 

  28. Bergman, Å. & Wachtmeister, C.A. Synthesis of methylthio- and methylsulphonylpolychlorobiphenyls via nucleophilic aromatic substitution of certain types of polychlorobiphenyls. Chemosphere 7, 949–956 (1978).

    Article  CAS  Google Scholar 

  29. Rance, M. et al. Improved spectral resolution in COSY 1H spectra of proteins via double quantum filtering. Biochem. biophys. Res. Comm. 117, 479–485 (1983).

    Article  CAS  Google Scholar 

  30. Griesinger, C., Otting, G., Wüthrich, K. & Ernst, R.R. Clean TOCSY for 1H spin system identification in proteins. J. Am. chem. Soc. 110, 7870–7872 (1988).

    Article  CAS  Google Scholar 

  31. Macura, A. & Ernst, R.R. Elucidation of crossrelaxation in liquids by 2D NMR spectroscopy. Molec. Phys. 41, 95–117 (1980).

    Article  CAS  Google Scholar 

  32. Davis, A.L., Keeler, J., Laue, R.D. & Moskau, D. Experiments for recording pure-absorption heteronuclear correlation spectra using pulsed field gradients. J. magn. Reson. 98, 207–216 (1992).

    CAS  Google Scholar 

  33. Gronenborn, A.M., Bax, A., Wingfield, P.T. & Clore, G.M. A powerful method of sequential proton resonance assignment in proteins using relayed 15N-1H multiple quantum coherence spectroscopy. FEBS Lett. 243, 93–98 (1989).

    Article  CAS  Google Scholar 

  34. Bax, A., Clore, G.M. & Gronenborn, A.M. 1H-1H Correlation via isotropic mixing of 13C magentization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  35. Kay, L.E., Xu, G.-Y., Singer, A.U., Muhandiram, D.R. & Forman-Kay, J.D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlation in H2O samples of proteins. J. magn. Reson. B 101, 333–337 (1993).

    Article  Google Scholar 

  36. Bax, A. et al. Practical aspects of proton-carbon-carbon-proton three-dimesnional spectroscopy of 13C-labeled proteins. J. magn. Reson. 87, 620–627 (1990).

    CAS  Google Scholar 

  37. Wider, G. & Wüthrich, K. A simple experimental scheme using pulsed field gradients for coherence-pathway rejection and solvent suppression in phase-sensitive heteronuclear correlation spectra. J. magn. Reson. B 102, 239–241 (1993).

    Article  Google Scholar 

  38. Kuboniwa, H., Grzesiek, S., Delaglio, F. & Bax, A. Measurement of HN-Hα J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J. biol. NMR 4, 871–878 (1994).

    Article  CAS  Google Scholar 

  39. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. An alternative 3D NMR technique for correlating backbone 15N with side chain Hβ resonances in larger proteins. J. magn. Reson. 95, 636–641 (1991).

    CAS  Google Scholar 

  40. Vuister, G.W. & Bax, A. Measurement of two- and three-bond proton to methyl-carbon J couplings in proteins uniformly enriched with 13C. J. magn. Reson. B 102, 228–231 (1993).

    Article  Google Scholar 

  41. Brown, S.C., Weber, P.L. & Mueller, L. Toward complete 1H NMR spectra in proteins. J. magn. Reson. 77, 166–169 (1988).

    CAS  Google Scholar 

  42. Nilges, M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17, 297–309 (1993).

    Article  CAS  Google Scholar 

  43. Koning, T.M.G., Boelens, R. & Kaptein, R. Calculation of the nuclear Overhauser effect and the determination of proton-proton distances in the presence of internal motions. J. magn. Reson. 90, 111–123 (1990).

    CAS  Google Scholar 

  44. Wagner, G., Hyberts, S.G. & Havel, T.F. NMR structure determination in solution: a critique and comparison with X-ray crystallography. A. Rev. Biophys. biomol. Struct. 21, 167–198 (1992).

    Article  CAS  Google Scholar 

  45. Clore, G.M., Bax, A. & Gronenborn, A.M. Stereospecific assignment of β-methylene protons in larger proteins using 3D 15N-separated Hartmann-Hahn and 13C-separated rotating frame Overhauser spectroscopy. J. biomol. NMR 1, 13–22 (1991).

    Article  CAS  Google Scholar 

  46. Vuister, G.W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched proteins. J. Am. chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  47. Ludvigsen, S. & Poulsen, F.M. Positive φ-angles in proteins by nuclear magnetic resonance spectroscopy. J. biol. NMR 2, 227–233 (1991).

    Article  Google Scholar 

  48. Vuister, G.W., Yamazaki, T., Torchia, D.A. & Bax, A. Measurement of two- and three-bond 13C-1H J couplings to the Cδ carbons of leucine residues in staphylococcal nuclease. J. biol. NMR 3, 297–306 (1993).

    Article  CAS  Google Scholar 

  49. Zuiderweg, E.R.P., Boelens, R. & Kaptein, R. Stereospecific assignments of 1H-NMR methyl lines and conformation of valyl side chains in the lac repressor head piece. Biopolymers 24, 601–611 (1985).

    Article  CAS  Google Scholar 

  50. Hargittai, I. in The chemistry of sulphones and sulphoxides (eds Patai, S., Rappoport, Z. & Stirling, C. J. M.) 33 (John Wiley & Sons; 1988).

    Google Scholar 

  51. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  52. Bacon, D.J. & Anderson, W.F. A fast algorithm for rendering spacefilling molecule pictures. Molec. Graphics 6, 219–220 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Härd, T., Barnes, H., Larsson, C. et al. Solution structure of a mammalian PCB-binding protein in complex with a PCB. Nat Struct Mol Biol 2, 983–989 (1995). https://doi.org/10.1038/nsb1195-983

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1195-983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing