Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c550 and cytochrome cd1 nitrite reductase

Abstract

The structure of pseudoazurin from Thiosphaera pantotropha has been determined and compared to structures of both soluble and membrane-bound periplasmic redox proteins. The results show a matching set of unipolar, but promiscuous, docking motifs based on a positive hydrophobic surface patch on the electron shuttle proteins pseudoazurin and cytochrome c550 and a negative hydrophobic patch on the surface of their known redox partners. The observed electrostatic handedness is argued to be associated with the charge-asymmetry of the membrane-bound components of the redox chain due to von Heijne's ‘positives-inside’ principle. We propose a ‘positives-in-between’ rule for electron shuttle proteins, and expect a negative hydrophobic patch to be present on both the highest and lowest redox potential species in a series of electron carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adman, E.T. Copper Protein Structures. in Advances in Protein Chemistry (eds Anfinsen, C.B., Edsall, J.T., Richards, F.M. & Eisenberg, D.S.) 145–197 (Academic Press; 1991).

    Google Scholar 

  2. Adman, E.T. Structure and function of copper-containing proteins. Curr. Opin. struct. Biol. 1, 895–904 (1991).

    Article  CAS  Google Scholar 

  3. Malmström, B.G. Rack-induced bonding in blue-copper proteins. Eur. J. Biochem. 223, 711–718 (1994).

    Article  Google Scholar 

  4. Berks, B.C., Baratta, D., Richardson, D.J. & Ferguson, S.J. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Eur. J. Biochem. 212, 467–476 (1993).

    Article  CAS  Google Scholar 

  5. Moir, J.W.B., Baratta, D., Richardson, D.J. & Ferguson, S.J. The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha -the role of pseudoazurin as an electron-donor. Eur. J. Biochem. 212, 377–385 (1993).

    Article  CAS  Google Scholar 

  6. Moir, J.W.B. & Ferguson, S.J., Properties of Paracoccus denitrificans mutant deleted in cytochrome c550 indicate that a copper protein can substitute for this cytochrome in electron transport to nitrite, nitric oxide and nitrous oxide. Microbiology 140, 389–397 (1994).

    Article  CAS  Google Scholar 

  7. Sjölin, L. et al. Structure of Pseudomonas aeruginosa zinc-azurin mutant Asn47Asp at 2.4 Å resolution. Acta crystallogr. D49, 449–457 (1993).

    Google Scholar 

  8. Chan, C. et al. The complete amino acid sequence confirms the presence of pseudoazurin in Thiosphaera pantotropha. Biochem. J. 308 585–590 (1995).

    Article  CAS  Google Scholar 

  9. Lee, B. & Richards, F. The interpretation of protein structure: estimation of static accessibility. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  10. Siegelman, M.H., Rasched, I.R., Kunert, K.J., Kroneck, P. & Böger, P. Plastocyanin: possible significance of quaternary structure. Eur. J. Biochem. 64, 131–140 (1976).

    Article  CAS  Google Scholar 

  11. Fülöp, V., Moir, B., Ferguson, S.J. & Hajdu, J. The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1 . Cell 81, 369–37 (1995).

    Article  Google Scholar 

  12. Parr, S.R., Barber, D., Greenwood, C. & Brunori, M. The electron transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa. Biochem. J. 167, 447–455 (1977).

    Article  CAS  Google Scholar 

  13. Yamanaka, T. & Okunuki, K. Crystalline pseudomonas cytochrome oxidase. Biochim. biophys. Acta 67, 379–393 (1963).

    Article  CAS  Google Scholar 

  14. Ikeda, O. & Sakurai, T. Electron transfer reaction of stellacyanin at a bare glassy carbon electrode. Eur. J. Biochem. 219, 813–819 (1994).

    Article  CAS  Google Scholar 

  15. McLendon, G. Control of biological electron-transport via molecular recognition and binding—the velcro model. Structure and Bonding (eds M. J. Clarke et al.) 75, 159–174 (Springer, Berlin; 1991).

    Google Scholar 

  16. Jeng, M., Englander, S.W., Pardue, K., Rogalskyj, J.S. & McLendon, G. Structural dynamics in an electron-transfer complex. Nature struct. Biol. 1, 234–238 (1994).

    Article  CAS  Google Scholar 

  17. Gray, K.A., Davidson, V.L. & Knaff, D.B. Complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrif icans. J. biol. Chem. 263, 13987–13990 (1988).

    CAS  PubMed  Google Scholar 

  18. Kukimoto, M. et al. Identification of interaction site of pseudoazurin with its redox partner, copper-containing nitrite reductase from Alcaligenes faecalis S-6. Prot. Engng. 8, 153–158 (1995).

    Article  CAS  Google Scholar 

  19. Kamp, M.v.d. et al. Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome c551 and nitrite reductase. Eur. J. Biochem. 194, 109–118 (1995).

    Article  Google Scholar 

  20. Nar, H., Messerschmidt, A., Huber, R., Kamp, M.v.d. & Canters, G.W. X-ray crystal structure of the two site-specific mutants His35Gln and His35Leu of azurin from Pseudomonas aeruginosa. J. molec. Biol. 218, 427–447 (1991).

    Article  CAS  Google Scholar 

  21. Durley, R., Chen, L., Lim, L.W., Mathews, F.S. & Davidson, V.L. Crystal structure analysis of amicyanin and apoamicyanin from Paracoccus denitrificans at 2.0 Å and 1.8 Å resolution. Protein. Sci. 2, 739–752 (1993).

    Article  CAS  Google Scholar 

  22. Salamme, F.R. An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5 . J. molec. Biol. 102, 563–568 (1976).

    Article  Google Scholar 

  23. van Spanning, R.J.M. et al. Mutagenesis of the gene encoding cytochrome c550 of Paracoccus denitrif icans and analysis of the resultant physiological effects. J. Bacterial. 172, 986–996 (1990).

    Article  CAS  Google Scholar 

  24. Samyn, B., Berks, B.C., Page, M.D., Ferguson, S.J. & van Beeumen, J. Characterisation and amino acid sequence of cytochrome c550 from Thiosphaera pantotropha. Eur. J. Biochem. 219, 585–594 (1994).

    Article  CAS  Google Scholar 

  25. Timkovich, R. & Dickerson, R.E. The Structure of Paracoccus denitrificans cytochrome c550 . J. biol. Chem. 251, 4033–4046 (1976).

    CAS  PubMed  Google Scholar 

  26. Benning, M.M., Meyer, T.E. & Holden, H.M. X-ray structure of the cytochrome c2 isolated from Paracoccus denitrificans refined to 1.7 Å resolution. Arch. biochem. Biophys. 310, 460–466 (1994).

    Article  CAS  Google Scholar 

  27. Matsuura, Y., Takano, T. & Dickerson, R.E. Structure of cytochrome c551 from Pseudomonas aeruginosa refined at 1.6Å resolution and comparison of the two redox forms. J. molec. Biol. 156, 389–409 (1982).

    Article  CAS  Google Scholar 

  28. Lam, Y. & Nicholas, D.J D. A nitrite reductase with cytochrome oxidase activity from Paracoccus denitrificans. Biochim. biophys. Acta 180, 459–472 (1969).

    Article  CAS  Google Scholar 

  29. Wharton, D.C., Gudat, J.C. & Gibson, Q.H. Cytochrome oxidase from Pseudomonas aeruginosa : II Reaction with Copper Protein. Biochim. biophys. Acta 292, 611–620 (1973).

    Article  CAS  Google Scholar 

  30. Silvestrini, M.C., Tordi, M.G., Colosimo, A., Antonini, E. & Brunori, M. The kinetics of electron transfer between Pseudomonas aeruginosa cytochrome c551 and its oxidase. Biochem. J. 203, 445–451 (1982).

    Article  CAS  Google Scholar 

  31. Chen, L. et al. Crystal structure of an electron-transfer complex between methylamine dehydrogenase and amicyanin. Biochemistry 31, 4959–4964 (1992).

    Article  CAS  Google Scholar 

  32. Chen, L., Durley, R.C.E., Mathews, F.S. & Davidson, V.L. Structure of an electron transfer complex: methylamine dehydrogenase, amicyanin, and cytochrome c551 . Science 264, 86–90 (1994).

    Article  CAS  Google Scholar 

  33. Von Heijne, G. Membrane-proteins - from sequence to structure. A. Rev. Biophys. biomol. Struct 23, 167–192 (1994).

    Article  CAS  Google Scholar 

  34. Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. & Rees, D.C. Structure of the reaction center from Rhodobacter-sphaeroides r-26 - the protein subunits. Proc. natn. Acad. Sci. U.S.A. 84, 6162–6166 (1987).

    Article  CAS  Google Scholar 

  35. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome oxidase from Paracoccus denitrificans. Nature 376, 660–669 (1995).

    Article  CAS  Google Scholar 

  36. Witt, H., Zickermann, V. & Ludwig, B. Site-directed mutagenesis of cytochrome c oxidase reveals two acidic residues involved in the binding of cytochrome c. Biochim. biophys. Acta 1230, 74–76 (1995).

    Article  Google Scholar 

  37. Rees, D.C. Electrostatic influence on energetics of electron transfer reactions. Proc. natn. Acad. Sci. U.S.A. 82, 3082–3085 (1995).

    Article  Google Scholar 

  38. Poulos, T.L., Sheriff, S. & Howard, A.J. Co-crystals of yeast cytochrome c peroxidase and horse heart cytochrome c. J. biol. Chem. 262, 13881–13884 (1987).

    CAS  Google Scholar 

  39. Poulos, T.L. & Kraut, J. A hypothetical model of the cytochrome c peroxidase cytochrome c electron transfer complex. J. biol. Chem. 255, 10322–10330 (1980).

    Google Scholar 

  40. Pelletier, H. & Kraut, J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258, 1748–1755 (1992).

    Article  CAS  Google Scholar 

  41. Galzi, J.L. & Changeux, J.P. Neurotransmitter-gated ion channels as unconventional allosteric proteins. Curr.Opi. struct. Biol. 4, 554–565 (1994).

    Article  CAS  Google Scholar 

  42. Fourme, R., Ducruix, A., Ries-Kaut, M. & Capelle, B. The perfection of protein crystals probed by direct recording of Bragg reflection profiles with a quasi-planar X-ray wave. J. synchrotron Rad. 2, 136–142 (1995).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. Oscillation data reduction program. in Data Collection and Processing (eds Sawyer, L, Isaacs, N. W. & Bailey S.) 55–62 DL/SCI/R34 (Daresbury Laboratory, Warrington 1993).

    Google Scholar 

  44. CCP4. The CCP4 Suite: programs for protein crystallography. Acta crystallogr. D50, 760–763 (1994).

  45. Rossmann, M.G. & Blow, D.M. The detection of sub-units within the crystallographic asymmetric unit. Acta crystallogr. 15, 24–31 (1962).

    Article  CAS  Google Scholar 

  46. Matthews, B.W. Solvent content of protein crystals. J. molec. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  47. Petratos, K., Dauter, Z. & Wilson, K.S. Refinement of the structure of Pseudoazurin from Alcaligenes faecalis S-6 at 1.55Å Resolution. Acta crystallogr. B44, 628–636 (1988).

    Article  CAS  Google Scholar 

  48. Navaza, J. AMoRe: an automated package for molecular replacement. Acta crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  49. Brünger, A.T., Kuriyan, J. & Karplus, M., R-factor refinement by molecular dynamics. Science, 235, 458–460 (1987).

    Article  Google Scholar 

  50. Brünger, A.T., Krutowski, A. & Erickson, J.W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta crystallogr., A46, 585–593 (1990).

    Article  Google Scholar 

  51. Jones, T.A., Bergdoll, M. & Kjeldgaard, M. O: a macromolecule modelling environment. In Crystallographic and Modelling Methods in Molecular Design. (eds Bugg, C. & Ealick, S.) 189–199 (Springer, New York. 1990).

    Chapter  Google Scholar 

  52. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  53. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  Google Scholar 

  54. Read, R.J., Fourier coefficients for maps using phases from partial structures with errors. Acta crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  55. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  56. Merritt, E.A. & Murphy, M.E.P., Raster 3D Version 2.0Å program for photorealistic molecular graphics. Acta crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P., Fülöp, V., Leung, YC. et al. Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c550 and cytochrome cd1 nitrite reductase. Nat Struct Mol Biol 2, 975–982 (1995). https://doi.org/10.1038/nsb1195-975

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1195-975

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing