Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a single-cytidine hairpin loop formed by the DNA triplet GCA

Abstract

In certain contexts the DNA triplet GGA, when juxtaposed on opposite strands of a DNA duplex, shows the unusual property of pairing with itself in an antiparallel orientation to form the (GGA)2 motif. In this motif the central guanines do not pair but intercalate and stack between sheared G•A pairs. Similar studies with GCA triplets reveal that they do not form analogous paired (GCA)2 motifs but instead strongly promote formation of a hairpin, the structure of which is now reported here. The GCA hairpin loop consists of a single cytidine residue closed by a sheared G•A pair and this structure is discussed in the context of triplet expansions in triplet-repeat diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chou, S.-H., Zhu, L., & Reid, B.R. The unusual structure of the human centromere (GGA)2 motif: unpaired guanosine residues stacked between sheared GA pairs. J. molec. Biol. 244, 259–268, (1994).

    Article  CAS  Google Scholar 

  2. Zhu, L., Chou, S.-H. & Reid, B.R. The solution structure of a novel DNA duplex formed by human centromere d(TGGAA) repeats with possible implications for chromosome attachment during mitosis. J. molec. Biol. in the press.

  3. Chou, S.-H., Cheng, J.-W. & Reid, B.R. Solution structure of [d(ATGAGCGAATA)]2 adjacent GA mismatches stabilized by cross-strand base-stacking and BII phosphate groups. J. molec. Biol. 228, 138–155 (1992).

    Article  CAS  Google Scholar 

  4. Cheng, J.-W., Chou, S.-H. & Reid, B.R. Base pairing geometry in GA mismatches depends entirely on the neighboring sequence. J. molec. Biol. 228, 1037–1041 (1992).

    Article  CAS  Google Scholar 

  5. Li, Y., Zon, G. & Wilson, W.D. NMR and molecular modeling evidence for aGA mismatch base pair in a purine-rich DNA duplex. Proc. natn. Acad. Sci. U.S.A. 88, 26–30 (1991).

    Article  CAS  Google Scholar 

  6. Hare, D.R., Wemmer, D.E., Chou, S.-H., Drobny, G. & Reid, B.R. Assignment of the non-exchangeable proton resonances of d(CGCGAATTCGCG)2 using two-dimensional NMR methods. J. molec. Biol. 171, 319–336 (1983).

    Article  CAS  Google Scholar 

  7. Zhu, L. & Reid, B.R., An improved NOESY simulation program for partially relaxed spectra: BIRDER. J. magn. Reson. 106, 227–235 (1995).

    Article  CAS  Google Scholar 

  8. Chou, S.-H., Cheng, J.-W., Fedoroff, O. & Reid, B.R. The DNA sequence GCGAATGAGC containing the human centromere core sequence GAAT forms a self-complementary duplex with sheared GA pairs in solution. J. molec. Biol. 241, 467–479 (1994).

    Article  CAS  Google Scholar 

  9. Poltev, V.I. & Shulyupina, N.V., Simulation of interactions between nucleic acid bases by refined atom-atom potential functions. J. biomol. Struct. Dyn. 3, 739–765 (1986).

    Article  CAS  Google Scholar 

  10. Hirao, I. et al. Most compact hairpin-turn structure exerted by a short DNA fragment d(GCGAAGC) in solution; an extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 22, 576–582 (1994).

    Article  CAS  Google Scholar 

  11. Miwa, S. Triplet repeats strike again. Nature Genet. 6, 3–4 (1994).

    Article  CAS  Google Scholar 

  12. Willems, P.J., Dynamic mutations hit double figures. Nature Genet. 8, 213–215 (1994).

    Article  CAS  Google Scholar 

  13. Mandel, J.-L., Trinucleotide diseases on the rise. Nature Genet. 7, 453–455 (1994).

    Article  CAS  Google Scholar 

  14. Wooster, R. et al. Instability of short tandem repeats (microsatellites) in human cancers. Nature Genet. 6, 152–156 (1994).

    Article  CAS  Google Scholar 

  15. Richards, R.I. & Sutherland, G.R. Simple repeat DNA is not replicated simply. Nature Genet. 6, 114–116 (1994).

    Article  CAS  Google Scholar 

  16. Tautz, D. & Schlotterer, C. Simple sequences. Curr. opin. genet. Dev. 4, 832–837 (1994).

    Article  CAS  Google Scholar 

  17. Rubinsztein, D.C. et al. Mutational bias provides a model for the evolution of Huntington's diseases and predicts a general increase in disease prevalence. Nature Genet. 7, 525–530 (1994).

    Article  CAS  Google Scholar 

  18. Rubinsztein, D.C., Leggo, J., Amos, W., Barton, D.E. & Ferguson-Smith, M.A. Myotonic dystrophy CTG repeats and the associated insertion/deletion polymorphism in human and primate populations, Human molec. Genet. 3, 2031–2035 (1994).

    CAS  Google Scholar 

  19. Brook, J.D., Retreat of the triplet repeat? Nature Genet. 3, 279–281 (1993).

    Article  CAS  Google Scholar 

  20. Plateau, P. & Gueron, M. Exchangeable proton NMR without base-line distortion, using new strong-pulse sequences. J. Am. Chem. Soc. 104, 7310–7311 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Chou, SH., Xu, J. et al. Structure of a single-cytidine hairpin loop formed by the DNA triplet GCA. Nat Struct Mol Biol 2, 1012–1017 (1995). https://doi.org/10.1038/nsb1195-1012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1195-1012

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing