Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gated channel into the proteasome core particle

Abstract

The core particle (CP) of the yeast proteasome is composed of four heptameric rings of subunits arranged in a hollow, barrel-like structure. We report that the CP is autoinhibited by the N-terminal tails of the outer (α) ring subunits. Crystallographic analysis showed that deletion of the tail of the α3-subunit opens a channel into the proteolytically active interior chamber of the CP, thus derepressing peptide hydrolysis. In the latent state of the particle, the tails prevent substrate entry by imposing topological closure on the CP. Inhibition by the α-subunit tails is relieved upon binding of the regulatory particle to the CP to form the proteasome holoenzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion of the α3 tail opens a channel into the CP.
Figure 2: Electron density maps of the α ring of the yeast core particle from a, wild type and b, α3ΔN cells.
Figure 3: The α3ΔN core particle is constitutively activated for peptide hydrolysis.
Figure 4: Contacts among residues of the YDR element in adjacent tails.
Figure 5: Model for coupled regulation of proteasome assembly and inhibition.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bochtler, M., Ditzel, L., Groll, M., Hartmann, C. & Huber, R. The proteasome. Ann. Rev. Biophys. Biomol. Struct. 28, 295–317 (1999).

    Article  CAS  Google Scholar 

  2. Schmidt, M., Lupas, A.N. & Finley, D. Structure and mechanism of ATP-dependent proteases. Curr. Op. Chem. Biol. 3, 584–591 (1999).

    Article  CAS  Google Scholar 

  3. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Ann. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  Google Scholar 

  4. De Mot, R., Nagy, I., Walz, J. & Baumeister, W. Proteasomes and other self-compartmentalizing proteases in bacteria. Trends Microbiol. 7, 88–92 ( 1999).

    Article  CAS  Google Scholar 

  5. Groll, M. et al. Structure of the 20S proteasome from yeast at 2.4 Å resolution . Nature 386, 463–471 (1997).

    Article  CAS  Google Scholar 

  6. Chu-Ping, M., Vu, J.H., Proske, R.J., Slaughter, C.A. & DeMartino, G.N. Identification, purification, and characterization of a high molecular weight, ATP-dependent activator (PA700) of the 20S proteasome. J. Biol. Chem. 269, 3539–3547 (1994).

    CAS  PubMed  Google Scholar 

  7. Hoffman, L. & Rechsteiner, M. Activation of the multicatalytic protease. J. Biol. Chem. 269, 16890–16895 (1994).

    CAS  PubMed  Google Scholar 

  8. Coux, O., Tanaka, K. & Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes . Ann. Rev. Biochem. 65, 810– 847 (1996).

    Article  Google Scholar 

  9. DeMartino, G.N. & Slaughter, C.A. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 274, 22123–22126 ( 1999).

    Article  CAS  Google Scholar 

  10. Rechsteiner, M., Realini, C & Ustrell, V. The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochem. J. 345, 1–15 (2000).

    Article  CAS  Google Scholar 

  11. Glickman, M.H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).

    Article  CAS  Google Scholar 

  12. Rubin, D.M. et al. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 17, 4909–4919 (1998).

    Article  CAS  Google Scholar 

  13. Lupas, A. & Baumeister, W. In Ubiquitin and the Biology of the Cell (eds Peters, J., Harris, R. & Finley, D.) 127–146 (Plenum Press, New York, 1998 ).

    Book  Google Scholar 

  14. Löwe, J. et al. Crystal structure of the 20S proteasome from the archeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  Google Scholar 

  15. Arendt, C.S. & Hochstrasser, M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Nat. Acad. Sci. USA 94, 7156–7161 (1997).

    Article  CAS  Google Scholar 

  16. Dick, T.P. et al. Contribution of proteasomal beta subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem. 273, 25637–25346 ( 1998).

    Article  CAS  Google Scholar 

  17. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179 –186 (1986).

    Article  CAS  Google Scholar 

  18. Khan, A.R. & James, M.N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 7, 815–836 (1998).

    Article  CAS  Google Scholar 

  19. Schmidtke, G. et al. Analysis of mammalian 20S proteasome biogenesis: the maturation of β-subunits is an ordered two-step mechanism involving autocatalysis . EMBO J. 15, 6887–6898 (1996).

    Article  CAS  Google Scholar 

  20. Chen, P. & Hochstrasser, M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86, 961– 972 (1996).

    Article  CAS  Google Scholar 

  21. Ditzel, L. et al. Conformational constraints for protein self-cleavage in the proteasome. J. Mol. Biol. 279, 1187– 1191 (1998).

    Article  CAS  Google Scholar 

  22. Groll, M. et al. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc. Nat. Acad. Sci. USA 96, 10976–10983 (1999).

    Article  CAS  Google Scholar 

  23. Finley, D., Ozkaynak, E. & Varshavksy, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046 (1987).

    Article  CAS  Google Scholar 

  24. Gietz, R.D. & Sugino, A. New yeast-Escherichia coli vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527– 534 (1988).

    Article  CAS  Google Scholar 

  25. Rothstein, R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194, 281– 301 (1991).

    Article  CAS  Google Scholar 

  26. Guarente, L. Yeast promoters and LacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181– 191 (1983).

    Article  CAS  Google Scholar 

  27. Leslie, A.G.W. Mosfilm user guide, mosfilm version 5.2. (MRC Laboratory of Molecular Biology, Cambridge, UK; 1994).

    Google Scholar 

  28. Brünger, A.T. X-PLOR, Version 3.1. A system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  29. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472– 475 (1992).

    Article  Google Scholar 

  30. Turk, D. Weiterentwicklung eines Programms für Molekulargraphik und Elektronendicht-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen. (Dissertation Technische Universität München; 1992 ).

    Google Scholar 

  31. Jones, T.A. A graphic model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  32. Glickman, M.H., Rubin, D.M., Fried, V.A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149–3162 (1998).

    Article  CAS  Google Scholar 

  33. van Nocker, S. et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 16, 6020–6028.

Download references

Acknowledgements

This work was supported by the NIH grant (to D.F.), the Foundation for the Promotion of Research at the Technion (M.H.G.), The US-Israel Binational Science Foundation (to M.H.G. and D.F.) and the Deutsche Forschungsgemeinschaft (to R.H.). A.K. was partially supported by a fellowship from the Studienfoerderung Cusanuswerk. The authors thank C. Larsen and G. Dittmar (Harvard) for generous assistance with computer imaging, K. Mann (Max-Planck-Institut für Biochemie, Martinsried, Germany) for help with N-terminal sequence analysis, and G. Bourenkow and H. Bartunik (DESY, Hamburg, Germany) for assistance with X-ray experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Groll, Michael H. Glickman or Daniel Finley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groll, M., Bajorek, M., Köhler, A. et al. A gated channel into the proteasome core particle. Nat Struct Mol Biol 7, 1062–1067 (2000). https://doi.org/10.1038/80992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing