Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of botulinum neurotoxin type A and implications for toxicity

Abstract

Botulinum neurotoxin type A (BoNT/A) is the potent disease agent in botulism, a potential biological weapon and an effective therapeutic drug for involuntary muscle disorders. The crystal structure of the entire 1,285 amino acid di-chain neurotoxin was determined at 3.3 Å resolution. The structure reveals that the translocation domain contains a central pair of αhelices 105 Å long and a ~50 residue loop or belt that wraps around the catalytic domain. This belt partially occludes a large channel leading to a buried, negative active site — a feature that calls for radically different inhibitor design strategies from those currently used. The fold of the translocation domain suggests a mechanism of pore formation different from other toxins. Lastly, the toxin appears as a hybrid of varied structural motifs and suggests a modular assembly of functional subunits to yield pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo diagram of the initial electron density.
Figure 2: Stereo diagram of the backbone trace for the BoNT/A model.
Figure 3: Stereo superposition of the BoNT/A binding domain (residues 873–1,295) in red and the tetanus toxin binding domain (residues 874–1,314) in yellow.
Figure 4: Molecular surface of the catalytic domain colored by electrostatic potential (red = negative, blue = positive, white = uncharged).
Figure 5: Stereo diagram of the catalytic domain active site.

Similar content being viewed by others

References

  1. Montecucco, C. & Schiavo, G. Structure and function of tetanus and botulinum neurotoxins.Quarterly Rev. Biophys. 28, 423–472 (1995).

    Article  CAS  Google Scholar 

  2. Krieglstein, K. G., DasGupta, B. R. & Henschen, A. H. Covalent structure of botulinum neurotoxin type A: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains. J. Prot. Chem. 13, 49–57 (1994).

    Article  CAS  Google Scholar 

  3. Simpson, L. L. Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J.Pharmacol. Exp. Ther. 212, 16–21 (1980).

    CAS  PubMed  Google Scholar 

  4. Umland, T. C. et al. Structure of the receptor binding fragment Hc of tetanus neurotoxin . Nature Struct. Biol. 4, 788– 792 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Nishiki, T. et al The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett. 378, 253–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Montecucco, C. How do tetanus and botulinum toxins bind to neuronal membranes? TIBS 11, 314–317 ( 1986).

    CAS  Google Scholar 

  7. Shapiro, R. E. et al. Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J. Biol. Chem. 272, 30380–30386 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  8. Holm, L. & Sander, C. The FSSP database of structurally aligned protein fold families. Nucleic Acids Res. 22 , 3600–3609 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, J. D., Carroll, J. & Ellar, D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353, 815–821 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  10. Choe, S. et al.The crystal structure of diphtheria toxin. Nature 357, 216–222 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Parker, M. W., Pattus, F., Tucker, A. D. & Tsernoglou, D. Structure of the membrane-pore-forming fragment of colicin A. Nature 337, 93–96 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  12. Allured, V. S., Collier, R. J., Carroll S. F. & McKay, D. B. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution . Proc. Natl. Acad. Sci. U. S. A. 83, 1320 –1324 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Parker, M. W. & Pattus, F. Rendering a membrane protein soluble in water: a common packing motif in bacterial protein toxins. Trends Biochem. Sci. 18, 391–395 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Wiener, M., Freymann, D., Ghosh, FNM> & Stroud, R. M. Crystal structure of colicin 1a. Nature 385, 461– 464 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. & Kuriyan, J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431– 435 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Oblatt-Montal, M., Yamazaki, M., Nelson, R. & Montal, M. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Science 4, 1490–1497 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426– 430 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  20. Fass, D., Harrison, S. C. & Kim, P. S. Retrovirus envelope domain at 1.7 Å resolution . Nature Struct. Biol . 3, 465– 469 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Lebeda, F.J. & Olson, M.A. Secondary sturctural predictions for the clostridial neurotoxins. Proteins: Struct. Funct. Genet. 20, 293–300 ( 1994).

    Article  CAS  Google Scholar 

  22. Yamasaki, S. et al. Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc. Natl. Acad. Sci. USA 91, 4688–4692 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woody, M. & DasGupta, B. R. Effect of tetranitromethane on the biological activities of botulinum neurotoxin types A, B, and E. Mol. Cell. Biochem. 85, 159–169 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Morante, S. et al. X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, alkaline protease and thermolysin. Eur. J. Biochem. 235, 606–612 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt, J. J. & Bostian, K. A. Endoproteinase activity of type A botulinum neurotoxin: substrate requirements and activation by serum albumin. J. Protein Chem. 16, 19–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Rossetto, O. et al. The metallo-proteinase activity of tetanus and botulinum neurotoxins . J. Physiology (Paris) 89, 43– 50 (1995).

    Article  CAS  Google Scholar 

  27. Schmidt, J. J. & Bostian, K. A. Proteolysis of synthetic peptides by type A botulinum neurotoxin. J. Protein Chem. 14, 703–708 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  28. Stevens, R. C., Evenson, M. L., Tepp, W. & DasGupta, B. R. Crystallization and preliminary x-ray analysis of botulinum neurotoxin type A. J. Mol. Biol. 222, 877–880 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Otwinowski, Z., in Data Collection and Processing, (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (Science and Engineering Research Council, Warrington, UK; 1993).

    Google Scholar 

  30. CCP4: A Suite of Programs for Protein Crystallography (SERC Daresbury Laboratory, Warrington WA4 4AD, UK; 1979).

  31. McRee, D. E. A visual protein crystallographic software system for X11/Xview J. Mol. Graphics 10, 44 (1992 ).

    Article  Google Scholar 

  32. Cowtan, K. Joint CCP4 ESF-EACBM Newsl. Protein Crystallogr. 31, 34 (1994).

    Google Scholar 

  33. Jones, T. A., Zou, J.-Y, Cowan, S. W. & Kjelgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these. Acta Crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

  34. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. 42, 140– 149 (1986).

    Article  Google Scholar 

  35. Brünger, A.T., X-PLOR v3.8 (Yale University Press, New Haven, CT; 1996).

    Google Scholar 

  36. Kraulis, P. J. MOLSCRIPT- a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  37. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Evenson, B. Santarsiero, B. Spiller and G. Wedemayer for their help in the project, P. Kuhn and M. Soltis for their assistance at beamlines 7-1 and 9-1 at the Stanford Synchrotron Radiation Laboratory, R. Sweet at beamline X12C of the Brookhaven National Laboratory, T. Earnest at the Advanced Light Source, F. Lebeda for helpful discussions, and T. Umland for providing us with the tetanus toxin binding domain coordinates. Financial support for this research was provided by a NSF pre-doctoral fellowship (D.B.L.) and the US Army Medical Research Institute of Infectious Diseases.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacy, D., Tepp, W., Cohen, A. et al. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Mol Biol 5, 898–902 (1998). https://doi.org/10.1038/2338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing