Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional rapidly folding proteins from simplified amino acid sequences

Abstract

Early protein synthesis is thought to have involved a reduced amino acid alphabet. What is the minimum number of amino acids that would have been needed to encode complex protein folds similar to those found in nature today? Here we show that a small β-sheet protein, the SH3 domain, can be largely encoded by a five letter amino acid alphabet but not by a three letter alphabet. Furthermore, despite the dramatic changes in sequence, the folding rates of the reduced alphabet proteins are very close to that of the naturally occurring SH3 domain. This finding suggests that despite the vast size of the search space, the rapid folding of biological sequences to their native states is not the result of extensive evolutionary optimization. Instead, the results support the idea that the interactions which stabilize the native state induce a funnel shape to the free energy landscape sufficient to guide the folding polypeptide chain to the proper structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shang, Z. et al. Design of a “minimAl” homeodomain: the N-terminal arm modulates DMA binding affinity and stabilizes homeodomain structure. Proc. Natl. Acad. Sci. USA 91, 8373–8377 (1994).

    Article  CAS  Google Scholar 

  2. Heinz, D.W., Baase, W.A. & Matthews, B.W. Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrates the redundancy of information in an amino acid sequence. Proc. Natl. Acad. Sci. USA 89, 3751–3755 (1992).

    Article  CAS  Google Scholar 

  3. Regan, L. & Degrado, W.F. Charcterization of a helical protein designed from first principles. Science 241, 976–978 (1988).

    Article  CAS  Google Scholar 

  4. Kamteker, S., Schiffer, J.M., Xiong, H., Babik, J.M. & Hecht, M.H. Protein design by binary patterning of polar and nonpolar amino acid sequences. Science 262, 1680–1685 (1993).

    Article  Google Scholar 

  5. Scott, J.K. & Smith, G.P. Searching for peptide ligands with an epitope library. Science 249, 386–390 (1990).

    Article  CAS  Google Scholar 

  6. Gu, H. et al. A phage display system for studying the sequence determinants of protein folding. Prot. Sci. 4, 11108–1117 (1995).

    Article  Google Scholar 

  7. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Two binding orientations for peptides to the src SH3 domain: development of a general model for SH3 ligand interactions. Science 266, 1241–1247 (1994).

    Article  CAS  Google Scholar 

  8. Davidson, A.R., Lumb, K.J. & Sauer, R.T. Cooperatively folded proteins in random libraries. Nature Struct. Biol. 2, 856–863 (1995).

    Article  CAS  Google Scholar 

  9. Lim, W.A. & Richards, F.M. Critical residues in an SH3 domain from Sem-5 suggest a mechanism for proline-rich peptide recognition. Nature Struct. Biol. 1, 221–225 (1994).

    Article  CAS  Google Scholar 

  10. Viguera, A.R., Arrondo, J.L.R., Musacchio, A., Saraste, M. & Serrano, L. Characterization of the interaction of natural proline-rich peptides with five different SH3 domains. Biochemistry 33, 10925–10933 (1994).

    Article  CAS  Google Scholar 

  11. Baker, D. & Agard, D.A. Kinetics versus thermodynamics in protein folding. Biochemistry 33, 7505–7509 (1994).

    Article  CAS  Google Scholar 

  12. Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968).

    Article  Google Scholar 

  13. Baker, D., Sohl, J.L. & Agard, D.A. A protein-folding reaction under kinetic control. Nature 356, 263–265 (1992).

    Article  CAS  Google Scholar 

  14. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Prot. Struc. Funct. Genet. 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  15. Dill, K.A. & Chan, H.S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  16. Handel, T.M., Williams, S.A. & DeGrado, W.F. Metal ion-dependent modulation of the dynamics of a designed protein. Science 261, 879–885 (1993).

    Article  CAS  Google Scholar 

  17. Woese, C. The Genetic Code, Harper & Row, New York (1967).

    Google Scholar 

  18. Crick, F.H.C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).

    Article  CAS  Google Scholar 

  19. Wong, J.T. A co-evolution theory of the genetic code. Proc. Nat. Acad. Sci. USA 72, 1909–1912 (1975).

    Article  CAS  Google Scholar 

  20. Reidhaar-Olsen, J.F. et al. Random mutagenesis of protein sequences using oligonucleotide cassettes. Methods Enzymol. 208, 564–586 (1991).

    Article  Google Scholar 

  21. Yu, H. et al. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  22. Scalley, M.L. et al. Kinetics of folding of the IgG binding domain of peptostreptoccocal protein L. Biochemistry 36, 3373–3382 (1997).

    Article  CAS  Google Scholar 

  23. Chen, J.K., Lane, W.S., Brauer, A., Tanaka, A. & Schreiber, S.L. Biased combinatorial libraries: novel ligands for the SH3 domain of phosphatidylinositol 3-kinase. J. Am. Chem. Soc. 115, 12591–12592 (1993).

    Article  CAS  Google Scholar 

  24. Hubbard, S.J. & Thornton, J.M. “NACCESS” computer program, Department of Biochemistry, University College London (1993).

    Google Scholar 

  25. Koyama, S. et al. Structure of the PI3K SH3 domain and analysis of the SH3 family. Cell 72, 945–952 (1993).

    Article  CAS  Google Scholar 

  26. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  27. Bacon, D. & Anderson, W.F. A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graphics 6, 219–220 (1988).

    Article  Google Scholar 

  28. Merritt, E.A. & Murphy, M.E. Raster 3D Version 2.0 A program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddle, D., Santiago, J., Bray-Hall, S. et al. Functional rapidly folding proteins from simplified amino acid sequences. Nat Struct Mol Biol 4, 805–809 (1997). https://doi.org/10.1038/nsb1097-805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1097-805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing