Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase

Abstract

Crystallization of membrane proteins, a prerequisite for their X-ray crystallographic analysis, remains difficult. Here, we demonstrate that the crystallization of the cytochrome c oxidase from Paracoccus denitrificans can be mediated by co-crystallization with an antibody Fv fragment. The crystals obtained contain all four subunits of this membrane protein complex and the Fv fragment. The approach of co-crystallizing membrane proteins with antibody fragments should be useful in obtaining well-ordered crystals of membrane proteins in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Schertler, G.F.X. Overproduction of membrane proteins. Curr. Opin. struct. Biol. 2, 534–544 (1992).

    Article  CAS  Google Scholar 

  2. Michel, H. Crystallization of membrane proteins. Trends biochem. Sci. 8, 56–59 (1983).

    Article  CAS  Google Scholar 

  3. Garavito, R.M., Markovic-Housley, Z. & Jenkins, J.A. The growth and characterization of membrane protein crystals. J. Cryst. Growth 76, 701–709 (1986).

    Article  CAS  Google Scholar 

  4. Kühlbrandt, W. Three-dimensional crystallization of membrane proteins. Q. Rev. Biophys. 21, 429–477 (1988).

    Article  Google Scholar 

  5. McPherson, A. Preparation and Analysis of Protein Crystals. (Wiley, New York, 1982).

    Google Scholar 

  6. Timmins, P.A., Hauk, J., Wacker, T. & Welte, W. The influence of heptane-1,2,3-triol on the size and shape of LDAO micelles. FEBS Lett. 280, 115–120 (1991).

    Article  CAS  Google Scholar 

  7. Gast, P., Hemelrijk, P. & Hoff, A.J. Determination of the number of detergent molecules associated with the reaction center protein isolated from the photosynthetic bacterium Rhodopseudomonas viridis . FEBS Lett. 337, 39–42 (1994).

    Article  CAS  Google Scholar 

  8. Michel, H. Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis . J. molec. Biol. 158, 567–572 (1982).

    Article  CAS  Google Scholar 

  9. Allen, J.P. & Feher, G. Crystallization of reaction centre from Rhodopseudomonas sphaeroides:Preliminary characterization. Proc. natn. Acad Sci. U.S.A. 81, 4795–4799 (1984).

    Article  CAS  Google Scholar 

  10. Chang, C.-H., Schiffer, M., Tiede, D., Smith, U. & Norris, J. Characterization of the bacterial photosynthetic reaction center crystals from Rhodopseudomonas sphaeroidesR-26 by X-ray diffraction. J. molec. Biol. 186, 201–203 (1985).

    Article  CAS  Google Scholar 

  11. Buchanan, S.K., Fritzsch, G., Ermler, U. & Michel, H. New crystal form of the photosynthetic reaction centre from Rhodobacter sphaeroides of improved diffraction quality. J. molec. Biol. 230, 1311–1314 (1993).

    Article  CAS  Google Scholar 

  12. Garavito, R.M., Jenkins, J., Jansonius, J.N., Karlsson, R. & Rosenbusch, J.P. X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. J. molec. Biol. 164, 313–327 (1983).

    Article  CAS  Google Scholar 

  13. Kreusch, A., Weiss, M.S., Welte, W., Weckesser, J. & Schulz, G.E. Crystals of integral membrane protein diffracting to 1.8Å resolution. J. molec. Biol. 217, 9–10 (1991).

    Article  CAS  Google Scholar 

  14. Picot, D. & Garavito, R.M. in Cytochrome P450: Biochemistry and Biophysics (ed. Schulz, I.) 29–36 (Taylor and Francis, Philadelphia, 1989).

    Google Scholar 

  15. Michel, H. in Crystallization of Membrane Proteins (ed. Michel, H.) 73–88, (CRC Press, Boca Raton, Florida, 1991).

    Google Scholar 

  16. Nunn, R.S., Artymiuk, P.J., Baker, P.J., Rice, D.W. & Hunter, C.N. Purification and crystallization of the light harvesting LH1 complex from Rhodobacter sphaeroides . J. molec. Biol. 228, 1259–1262 (1992).

    Article  CAS  Google Scholar 

  17. Papiz, M.Z. et al. Crystallization and characterization of two crystal forms of the B800-850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050. J. molec. Biol. 209, 833–835 (1989).

    Article  CAS  Google Scholar 

  18. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318, 618–624 (1985).

    Article  CAS  Google Scholar 

  19. Komiya, H., Yeates, T.O., Rees, D.C., Allen, J.P. & Feher, G. Structure of the reaction center from Rhodobacter sphaeroidesR-26 and 2.4.1: Symmetry relations and sequence comparisons between different species. Proc. natn. Acad Sci. U.S.A. 85, 9012–9016 (1988).

    Article  CAS  Google Scholar 

  20. Chang, C.-H., El-Kabbani, O., Tiede, D., Norris, J. & Schiffer, M. Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides . Biochemistry 30, 5352–5360 (1991).

    Article  CAS  Google Scholar 

  21. Ermler, U., Fritzsch, G., Buchanan, S.K. & Michel, H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65Å resolution: cofactors and protein-cofactor interactions. Structure 2, 925–936 (1994).

    Article  CAS  Google Scholar 

  22. Weiss, M.S., Abele, U., Weckesser, J., Welte, W., Schiltz, E. & Schulz, G.E. Molecular achitecture and electrostatic properties of a bacterial porin. Science 254, 1627–1630 (1991).

    Article  CAS  Google Scholar 

  23. Weiss, M.S. & Schulz, G.E. Structure of porin refined at 1.8Å resolution. J. molec. Biol. 227, 493–508 (1992).

    Article  CAS  Google Scholar 

  24. Cowan, S.W. et al. Crystal structure explains functional properties of two E. coli porins. Nature 358, 727–733 (1992).

    Article  CAS  Google Scholar 

  25. Picot, D., Loll, P.J. & Garavito, R.M., X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367, 243–249 (1994).

    Article  CAS  Google Scholar 

  26. McDermott, G. et al. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).

    Article  CAS  Google Scholar 

  27. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. & Downing, K.H. Model of the structure of Bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. molec. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  28. Kühlbrandt, W., Wang, D.N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994).

    Article  Google Scholar 

  29. Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennet, W.S., Strominger, J.L. & Wiley, D.C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512 (1987).

    Article  CAS  Google Scholar 

  30. Hubbard, S.R., Wei, L., Ellis, L. & Hendrickson, W.A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    Article  CAS  Google Scholar 

  31. Schafmeister, C.E., Miercke, L.J.W. & Stroud, R.M. Structure at 2.5Å of a designed peptide that maintains solubility of membrane proteins. Science 262, 734–737 (1993).

    Article  CAS  Google Scholar 

  32. Privé, G.G., Verner, G.E., Weitzman, C., Zen, K.H., Eisenberg, D. & Kaback, H.R. Fusion proteins as a tool for crystallization: the lactose permease from Escherichia coli . Acta crystallogr. D 50, 375–379 (1994).

    Article  Google Scholar 

  33. Ozawa, T., Suzuki, H. & Tanaka, M. Crystallization of part of the mitochondrial electron transfer chain: cytochrome c oxidase-cytochrome c complex. Proc. natn. Acad Sci. U.S.A. 77, 928–930 (1980).

    Article  CAS  Google Scholar 

  34. Lesk, A.M. & Chothia, C. Elbow motion in the immunoglobulins involves a molecular ball-and socket joint. Nature 335, 188–190 (1988).

    Article  CAS  Google Scholar 

  35. Skerra, A. & Plückthun, A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli . Science 240, 1038–1041 (1988).

    Article  CAS  Google Scholar 

  36. Schmidt, T.G.M. & Skerra, A. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Engineering 6, 109–122 (1993).

    Article  CAS  Google Scholar 

  37. Kleymann, G., Ostermeier, C., Ludwig, B., Skerra, A. & Michel, H. Engineered Fv fragments as a tool for the one-step purification of integral multisubunit membrane proteins. Bio/Technology 13, 155–160 (1995).

    CAS  PubMed  Google Scholar 

  38. Saraste, M. Structural features of cytochrome oxidase. Q. Rev. biophys. 23, 331–366 (1990).

    Article  CAS  Google Scholar 

  39. Minireview series: Cytochrome Oxidase (ed. Ferguson-Miller, S.) J. Bioenerg. & Biomembr. 25, 69–188 (1993).

  40. Yonetani, T. Studies on cytochrome oxidase. J. biol. Chem. 236, 1680–1688 (1961).

    CAS  PubMed  Google Scholar 

  41. Ozawa, T., Tanaka, M. & Wakabayashi, T. Crystallization of mitochondrial cytochrome oxidase. Proc. natn. Acad Sci. U.S.A. 79, 7175–7179 (1982).

    Article  CAS  Google Scholar 

  42. Yoshikawa, S., Tera, T., Takahashi, Y., Tsukihara, I. & Caughey, W.S. Crystalline cytochrome c oxidase of bovine heart mitochondrial membrane: composition and X-ray diffraction studies. Proc. natn. Acad Sci. U.S.A. 85, 1354–1358 (1988).

    Article  CAS  Google Scholar 

  43. Zamudio, I., Komblatt, J., Nicholls, P., Li, Y. & Cygler, M. Preliminary studies on the crystallization of beef heart cytochrome c oxidase by vapor diffusion. Biochem. biophys. Res. Commun. 169, 1105–1110 (1990).

    Article  CAS  Google Scholar 

  44. Ostermeier, C., Essen, L.-O. & Michel, H. Crystals of an antibody Fv fragment against an integral membrane protein diffracting to 1.28Å resolution. Proteins 21, 74–77 (1995).

    Article  CAS  Google Scholar 

  45. Kleymann, G., Ostermeier, C., Heitmann, K., Haase, W. & Michel, H. Use of antibody fragments (Fv) in immunocytochemistry. J. Histochem. Cytochem. 43, 607–614 (1995).

    Article  CAS  Google Scholar 

  46. Ludwig, B. & Schatz, G. A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus denitrificans . Proc. natn. Acad Sci. U.S.A. 77, 196–200 (1980).

    Article  CAS  Google Scholar 

  47. Lappalainen, P., Aasa, R., Malmström, B.G. & Saraste, M. Soluble CuA-binding domain from the Paracoccus cytochrome c oxidase. J. biol. Chem. 268, 26416–26421 (1993).

    CAS  PubMed  Google Scholar 

  48. Laver, W.G. Crystallization of antibody-protein complexes. Methods: A Companion to Methods of Enzymology 1, 70–74 (1990).

    Article  CAS  Google Scholar 

  49. Hendler, R.W., Pardhasaradhi, K., Reynafarje, B. & Ludwig, B. Comparison of energy-transducing capabilities of the two- and three-subunit cytochromes aa3 from Paracoccus denitrificans and the 13-subunit beef heart enzyme. Biophys. J. 60, 415–423 (1991).

    Article  CAS  Google Scholar 

  50. Haltia, T. et al. Thermodynamic and structural stability of cytochrome c oxidase from Paracoccus denitrificans . Biochemistry 33, 9731–9740 (1994).

    Article  CAS  Google Scholar 

  51. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8Å resolution of cytochrome c oxidase from Paracoccus denitrificans . Nature 376, 660–669 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostermeier, C., Iwata, S., Ludwig, B. et al. Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Struct Mol Biol 2, 842–846 (1995). https://doi.org/10.1038/nsb1095-842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1095-842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing