Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of HCV IRES domain II determined by NMR

Abstract

Complex RNA structures regulate many biological processes, but are often too large for structure determination by NMR methods. The 5′ untranslated region (5′ UTR) of the hepatitis C viral (HCV) RNA genome contains an internal ribosome entry site (IRES) that binds to 40S ribosomal subunits with high affinity and specificity to control translation. Domain II of the HCV IRES forms a 25-kDa folded subdomain that may alter ribosome conformation. We report here the structure of domain II as determined using an NMR approach that combines short- and long-range structural data. Domain II adopts a distorted L-shape structure, and its overall shape in the free form is markedly similar to its 40S subunit–bound form; this suggests how domain II may modulate 40S subunit conformation. The results show how NMR can be used for structural analysis of large biological RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NMR structure determination of the HCV IRES domain II structure.
Figure 2: Structure determination of domain II using RDCs.
Figure 3: Solution structure of HCV IRES RNA domain II and magnesium binding sites.
Figure 4: Comparison of subdomains IIb and IIId of the HCV IRES and base pairing schemes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J. & Hellen, C.U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).

    Article  CAS  Google Scholar 

  2. Sachs, A.B., Sarnow, P. & Hentze, M.W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89, 831–838 (1997).

    Article  CAS  Google Scholar 

  3. Kieft, J.S., Zhou, K., Jubin, R. & Doudna, J.A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).

    Article  CAS  Google Scholar 

  4. Spahn, C.M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291, 1959–1962 (2001).

    Article  CAS  Google Scholar 

  5. Otto, G.A., Lukavsky, P.J., Lancaster, A.M., Sarnow, P. & Puglisi, J.D. Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction. RNA 8, 913–923 (2002).

    Article  CAS  Google Scholar 

  6. Kim, I., Lukavsky, P.J. & Puglisi, J.D. NMR study of 100kDa HCV IRES RNA using segmental isotope labeling. J. Am. Chem. Soc. 124, 9338–9339 (2002).

    Article  CAS  Google Scholar 

  7. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  Google Scholar 

  8. Clore, G.M., Gronenborn, A.M. & Tjandra, N. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Magn. Reson. 131, 159–162 (1998).

    Article  CAS  Google Scholar 

  9. McCallum, S.A. & Pardi, A. Refined solution structure of the iron-responsive element RNA using residual dipolar couplings. J. Mol. Biol. 326, 1037–1050 (2003).

    Article  CAS  Google Scholar 

  10. Honda, M., Beard, M.R., Ping, L.H. & Lemon, S.M. A phylogenetically conserved stem-loop structure at the 5′ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J. Virol. 73, 1165–1174 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, W.D. & Wimmer, E. Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus. J. Virol. 75, 3719–3730 (2001).

    Article  CAS  Google Scholar 

  12. Gonzalez, R.L., Jr., & Tinoco I., Jr. Identification and characterization of metal ion binding sites in RNA. Methods Enzymol. 338, 421–443 (2001).

    Article  CAS  Google Scholar 

  13. Lukavsky, P.J., Otto, G.A., Lancaster, A.M., Sarnow, P. & Puglisi, J.D. Structures of two essential RNA domains for hepatitis C virus internal ribosome entry site function. Nat. Struct. Biol. 7, 1105–1110 (2000).

    Article  CAS  Google Scholar 

  14. Correll, C.C. et al. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc. Natl. Acad. Sci. USA 95, 13436–13441 (1998).

    Article  CAS  Google Scholar 

  15. Smith, D.B. et al. Variation of the hepatitis C virus 5′ non-coding region: implications for secondary structure, virus detection and typing. The International HCV Collaborative Study Group. J. Gen. Virol. 76, 1749–1761 (1995).

    Article  CAS  Google Scholar 

  16. Puglisi, J.D. & Wyatt, J.R. Biochemical and NMR studies of RNA conformation with an emphasis on RNA pseudoknots. Methods Enzymol. 261, 323–350 (1995).

    Article  CAS  Google Scholar 

  17. Lukavsky, P.J. & Puglisi, J.D. RNAPack: an integrated NMR approach to RNA structure determination. Methods 25, 316–332 (2001).

    Article  CAS  Google Scholar 

  18. Batey, R.T., Inada, M., Kujawinski, E., Puglisi, J.D. & Williamson, J.R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 20, 4515–4523 (1992).

    Article  CAS  Google Scholar 

  19. Hansen, M.R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074 (1998).

    Article  CAS  Google Scholar 

  20. Goddard, T.D. & Kneller, D.G. Sparky 3. (University of California, San Francisco, 2000)

    Google Scholar 

  21. Dingley, A.J. & Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J. Am. Chem. Soc. 120, 8293–8297 (1998).

    Article  CAS  Google Scholar 

  22. Weigelt, J. Single scan, sensitivity- and gradient-enhanced TROSY for multidimensional NMR experiments. J. Am. Chem. Soc. 120, 10778–10779 (1998).

    Article  CAS  Google Scholar 

  23. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  24. Brunger, A.T. X-PLOR, Version 3.1. A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, Connecticut, USA, 1992).

    Google Scholar 

  25. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  26. Losonczi, J.A., Andrec, M., Fischer, M.W. & Prestegard, J.H. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Magn. Reson. 138, 334–342 (1999).

    Article  CAS  Google Scholar 

  27. Zweckstetter, M. & Bax, A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792 (2000).

    Article  CAS  Google Scholar 

  28. Lavery, R. & Sklenar, H. Defining the structure of irregular nucleic acids: conventions and principles. J. Biomol. Struct. Dyn. 6, 655–667 (1989).

    Article  CAS  Google Scholar 

  29. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Lau for labeled nucleotide preparation and P. Sarnow, Y. Shibata-Lukavsky, R.L. Gonzalez, D. Daniels, C. Liu and E.V. Puglisi for helpful discussions. This work was supported by grants from the US National Institutes of Health, the Hutchison Foundation and Eli Lilly. Stanford Magnetic Resonance Laboratory is supported by the Stanford School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D Puglisi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukavsky, P., Kim, I., Otto, G. et al. Structure of HCV IRES domain II determined by NMR. Nat Struct Mol Biol 10, 1033–1038 (2003). https://doi.org/10.1038/nsb1004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing