Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metal ion coordination by the AGC triad in domain 5 contributes to group II intron catalysis

Abstract

Group II introns require numerous divalent metal ions for folding and catalysis. However, because little information about individual metal ions exists, elucidating their ligands, functional roles and relationships to each other remains challenging. Here we provide evidence that an essential motif at the catalytic center of the group II intron, the AGC triad within domain 5 (D5), provides a ligand for a crucial metal ion. Sulfur substitution of the pro-Sp oxygen of the adenosine strongly disrupts D5 binding to a substrate consisting of an exon and domains 1–3 of the intron (exD123). Cd2+ rescues this effect by enabling the sulfur-modified D5 to bind to exD123 with wild type affinity and catalyze 5′-splice site cleavage. This switch in metal specificity implies that a metal ion interacts with D5 to mediate packing interactions with D123. This new D5 metal ion rescues the disruption of D5 binding and catalysis with a thermodynamic signature different from that of the metal ion that stabilizes the leaving group during the first step of splicing, suggesting the existence of two distinct metal ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain 5 is essential for group II intron self-splicing.
Figure 2: Probing D5 function by phosphorothioate substitution.
Figure 3: Thermodynamic signatures for rescuing Cd2+ ions.
Figure 4: Determination of the binding affinities of D5 and D52-Sp to exD123.
Figure 5: Thermodynamic cycle describing the coupled equilibria for binding of Cd2+ and D52-Sp to exD123.

Similar content being viewed by others

References

  1. Pyle, A.M. In Catalytic RNA (eds Ekstein, F. & Lilley, D.M.J.) 75–107 (Springer-Verlag, Berlin; 1996).

    Book  Google Scholar 

  2. Sontheimer, E.J., Gordon, P.M. & Piccirilli, J.A. Genes Dev. 13, 1729–1741 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gordon, P.M., Sontheimer, E.J. & Piccirilli, J.A. Biochemistry 39, 12939–12952 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Chanfreau, G. & Jacquier, A. Science 266, 1383–1387 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Peebles, C.L., Zhang, M., Perlman, P.S. & Franzen, J.S. Proc. Natl. Acad. Sci. USA 92, 4422–4426 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boulanger, S.C. et al. Mol. Cell Biol. 15, 4479–4488 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abramovitz, D.L., Friedman, R.A. & Pyle, A.M. Science 271, 1410–1413 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Konforti, B.B. et al. Mol. Cell 1, 433–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Sigel, R.K.O., Vaidya, A. & Pyle, A.M. Nature Struct. Biol. 7, 1111–1116 (2001).

    Google Scholar 

  10. Fabrizio, P. & Abelson, J. Nucleic Acids Res. 20, 3659–3664 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu, Y-T., Maroney, P.A., Darzynkiewicz, E. & Nilsen, T.W. RNA 1, 46–54 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yean, S.L., Wuenschell, G., Termini, J. & Lin, R.-J. Nature 408, 881–884 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nilsen, T.W. In RNA structure and function (eds. Simons, R.W. & Grunberg-Manago, M.) 279–307 (Cold Spring Harbor Press, Cold Spring Harbor, New York; 1998).

    Google Scholar 

  14. Gordon, P.M., Sontheimer, E.J. & Piccirilli, J.A. RNA 6, 199–205 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pyle, A.M. & Green, J.B. Biochemistry 33, 2716–2725 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Podar, M., Perlman, P.S. & Padgett, R.A. Mol. Cell Biol. 15, 4466–4478 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daniels, D.L., Michels, W.J. & Pyle, A.M. J. Mol. Biol. 256, 31–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Abramovitz, D.L. & Pyle, A.M. J. Mol. Biol. 266, 493–506 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. & Cech, T.R. Nature 361, 85–88 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Christian, E.L., Kaye, N.M. & Harris, M.E. RNA 6, 511–519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sontheimer, E.J., Sun, S. & Piccirilli, J.A. Nature 388, 801–805 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Shan, S., Yoshida, A., Sun, S., Piccirilli, J.A. & Herschlag, D. Proc. Natl. Acad. Sci. USA 96, 12299–12304 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weinstein, L.B., Earnshaw, D.J., Cosstick, R. & Cech, T.R. J. Am. Chem. Soc. 118, 10341–10350 (1996).

    Article  CAS  Google Scholar 

  24. Swisher, J., Duarte, C.M., Su, L.J. & Pyle, A.M. EMBO J. 20, 2051–2061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Costa, M., Michel, F. & Westhof, E. EMBO J. 19, 5007–5018 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, S., Yoshida, A. & Piccirilli, J.A. RNA 3, 1352–1363 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, S., Karbstein, K., Peracchi, A., Beigelman, L. & Herschlag, D. Biochemistry 38, 14363–14378 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Dertinger, D., Behlen, L.S. & Uhlenbeck, O.C. Biochemistry 39, 55–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Slim, G. & Gait, M.J. Nucleic Acids Res. 19, 1183–1188 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jarrell, K.A., Peebles, C.L., Dietrich, R.C., Romiti, S.L. & Perlman, P.S. J.Biol. Chem. 263, 3432–3439 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Korennykh, X.-W. Fang and members of the Piccirilli lab for helpful discussions and comments on the manuscript and R.-J. Lin for sharing information about the snRNA position equivalent to position 2 of D5. This work is supported by the University of Chicago Faculty Research Fund and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Piccirilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, P., Piccirilli, J. Metal ion coordination by the AGC triad in domain 5 contributes to group II intron catalysis. Nat Struct Mol Biol 8, 893–898 (2001). https://doi.org/10.1038/nsb1001-893

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1001-893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing