Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p

Abstract

The fusion of intracellular transport vesicles with their target membranes requires the assembly of SNARE proteins anchored in the apposed membranes. Here we use recombinant cytoplasmic domains of the yeast SNAREs involved in Golgi to plasma membrane trafficking to examine this assembly process in vitro. Binary complexes form between the target membrane SNAREs Sso1p and Sec9p; these binary complexes can subsequently bind to the vesicle SNARE Snc2p to form ternary complexes. Binary and ternary complex assembly are accompanied by large increases in α-helical structure, indicating that folding and complex formation are linked. Surprisingly, we find that binary complex formation is extremely slow, with a second-order rate constant of 3 M–1 s–1. An N-terminal regulatory domain of Sso1p accounts for slow assembly, since in its absence complexes assemble 2,000-fold more rapidly. Once binary complexes form, ternary complex formation is rapid and is not affected by the presence of the regulatory domain. Our results imply that proteins that accelerate SNARE assembly in vivo act by relieving inhibition by this regulatory domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An N-terminal domain of Sso1p (Sso2p) inhibits binary and ternary SNARE complex formation.
Figure 2: Binary and ternary SNARE complex formation induces the folding of unstructured SNARE domains.
Figure 3: Binary and ternary SNARE complex stoichiometries.
Figure 4: The high thermal stability of binary and ternary SNARE complexes is independent of the Sso1p N-terminal domain.
Figure 5: Binary Sso1p–Sec9CT complex assembly approaches equilibrium slowly.
Figure 6: Formation of Sso1p–Sec9CT binary complex is inhibited by the N-terminal domain of Sso1p.
Figure 7: Formation of the binary complex is rate-limiting for ternary complex assembly.
Figure 8: Schematic model for SNARE assembly.

Similar content being viewed by others

References

  1. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  Google Scholar 

  2. Pfeffer, S.R. Transport vesicle docking: SNAREs and associates. A. Rev. Cell Dev. Biol. 12, 441–461 (1996).

    Article  CAS  Google Scholar 

  3. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-dissassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  4. Nichols, B.J., Ungermann, C., Pelham, H.R.B., Wickner, W.T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199–202 (1997).

    Article  CAS  Google Scholar 

  5. Rothman, J.E. & Warren, G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4, 220–233 (1994).

    Article  CAS  Google Scholar 

  6. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  7. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  8. Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094 (1997).

    Article  CAS  Google Scholar 

  9. Hughson, F.M. Enveloped viruses: a common mode of membrane fusion? Curr. Biol. 7, R565–R569 (1997).

    Article  CAS  Google Scholar 

  10. Protopopov, V., Govindan, B., Novick, P. & Gerst, J.E. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74, 855–861 (1993).

    Article  CAS  Google Scholar 

  11. Brennwald, P. et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258 (1994).

    Article  CAS  Google Scholar 

  12. Aalto, M.K., Ronne, H. & Keränen, S. Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J. 12, 4095–4104 (1993).

    Article  CAS  Google Scholar 

  13. Ferro-Novick, S. & Jahn, R. Vesicle fusion from yeast to man. Nature 370, 191–193 (1994).

    Article  CAS  Google Scholar 

  14. Hanson, P.I., Heuser, J.E. & Jahn, R. Neurotransmitter release — four years of SNARE complexes. Curr. Opin. Neurobiol. 7, 310–315 (1997).

    Article  CAS  Google Scholar 

  15. Rossi, G., Salminen, A., Rice, L.M., Brünger, A.T. & Brennwald, P. Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. J. Biol. Chem. 272, 16610–16617 (1997).

    Article  CAS  Google Scholar 

  16. Veit, M., Söllner, T.H. & Rothman, J.E. Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett. 385, 119–123 (1996).

    Article  CAS  Google Scholar 

  17. Couve, A. & Gerst, J.E. Yeast Snc proteins complex with Sec9: functional interactions between putative SNARE proteins. J. Biol. Chem. 269, 23391–23394 (1994).

    CAS  PubMed  Google Scholar 

  18. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  19. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  Google Scholar 

  20. Berger, B. et al. Predicting coiled coils by use of pairwise residue correlations. Proc. Natl Acad. Sci. USA 92, 8259–8263 (1995).

    Article  CAS  Google Scholar 

  21. Calakos, N., Bennett, M.K., Peterson, K.E. & Scheller, R.H. Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146–1149 (1994).

    Article  CAS  Google Scholar 

  22. Chapman, E.R., An, S., Barton, N. & Jahn, R. SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269, 27427–27432 (1994).

    CAS  PubMed  Google Scholar 

  23. Weimbs, T. et al. A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. USA 94, 3046–3051 (1997).

    Article  CAS  Google Scholar 

  24. Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brünger, A.T. A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272, 4582–4590 (1997).

    Article  CAS  Google Scholar 

  25. Fasshauer, D., Otto, H., Eliason, W.K., Jahn, R. & Brünger, A.T. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272, 28036–28041 (1997).

    Article  CAS  Google Scholar 

  26. Rice, L.M., Brennwald, P. & Brünger, A.T. Formation of a yeast SNARE complex is accompanied by significant structural changes. FEBS Lett. 415, 49–55 (1997).

    Article  CAS  Google Scholar 

  27. Rothman, J.E. & Söllner, T.H. Throttles and dampers: controlling the engine of membrane fusion. Science 276, 1212–1213 (1997).

    Article  CAS  Google Scholar 

  28. Søgaard, M. et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937–948 (1994).

    Article  Google Scholar 

  29. Lian, J.P., Stone, S., Jiang, Y., Lyons, P. & Ferro-Novick, S. Ypt1p implicated in v-SNARE activation. Nature 372, 698–701 (1994).

    Article  CAS  Google Scholar 

  30. Lupashin, V.V. & Waters, M.G. t-SNARE activation through transient interaction with a Rab-like guanosine triphosphatase. Science 276, 1255–1258 (1997).

    Article  CAS  Google Scholar 

  31. Pevsner, J. et al. Specificity and regulation of a synaptic vesicle docking complex. Neuron 13, 353–361 (1994).

    Article  CAS  Google Scholar 

  32. Garcia, E.P., Gatti, E., Butler, M., Burton, J. & De Camilli, P. A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc. Natl. Acad. Sci. USA 91, 2003–2007 (1994).

    Article  CAS  Google Scholar 

  33. Cornille, F., Goudreau, N., Ficheux, D., Niemann, H. & Roques, B.P. Solid-phase synthesis, conformational analysis and in vitro cleavage of synthetic human synaptobrevin II 1-93 by tetanus toxin L chain. Eur. J. Biochem. 222, 173–181 (1994).

    Article  CAS  Google Scholar 

  34. Zitzewitz, J.A., Bilsel, O., Luo, J., Jones, B.E. & Matthews, C.R. Probing the folding mechanism of a leucine zipper peptide by stopped-flow circular dichroism spectroscopy. Biochemistry 34, 12812–12819 (1995).

    Article  CAS  Google Scholar 

  35. Govindan, B. & Novick, P. Development of cell polarity in budding yeast. J. Exp. Zool. 273, 401–424 (1995).

    Article  CAS  Google Scholar 

  36. Terbush, D.R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    Article  CAS  Google Scholar 

  37. Finger, F.P., Hughes, T.E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571 (1998).

    Article  CAS  Google Scholar 

  38. Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalyzed by the ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307–317 (1997).

    Article  CAS  Google Scholar 

  39. Grabowski, R. & Gallwitz, D. High-affinity binding of the yeast cis-Golgi t-SNARE, Sed5p, to wild-type and mutant Sly1p, a modulator of transport vesicle docking. FEBS Lett. 411, 169–172 (1997).

    Article  CAS  Google Scholar 

  40. Hanson, P.I., Otto, H., Barton, N. & Jahn, R. The N-ethylmaleimide-sensitive fusion protein and α-SNAP induce a conformational change in syntaxin. J. Biol. Chem. 270, 16955–16961 (1995).

    Article  CAS  Google Scholar 

  41. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317–2325 (1995).

    Article  CAS  Google Scholar 

  42. Kee, Y., Lin, R.C., Hsu, S.-C. & Scheller, R.H. Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation. Neuron 14, 991–998 (1995).

    Article  CAS  Google Scholar 

  43. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    Article  CAS  Google Scholar 

  44. Lu, M., Blacklow, S.C. & Kim, P.S. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nature Struct. Biol. 2, 1075–1082 (1995).

    Article  CAS  Google Scholar 

  45. Poirer, M.A. et al. Protease resistance of syntaxin:SNAP-25:VAMP complexes: implications for assembly and structure. J. Biol. Chem. 273, 11370–11377 (1998).

    Article  Google Scholar 

  46. Fasshauer, D., Eliason, W.K., Brünger, A.T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354–10362 (1998).

    Article  CAS  Google Scholar 

  47. MacFerrin, K.D., Chen, L., Terranova, M.P., Schreiber, S.L. & Verdine, G.L. Overproduction of proteins using expression-cassette polymerase chain reaction. Meth. Enz. 217, 79–102 (1993).

    Article  CAS  Google Scholar 

  48. Smith, D.B. & Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  49. Nagai, K. & Thøgersen, H.C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Meth. Enz. 153, 461–481 (1987).

    Article  CAS  Google Scholar 

  50. Spanjaard, R.A., Chen, K., Walter, J.R. & van Duin, J. Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNAArg. Nucleic Acids Res. 18, 5031–5036 (1990).

    Article  CAS  Google Scholar 

  51. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  52. Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67, 10–15 (1957).

    Article  CAS  Google Scholar 

  53. Scholtz, J.M., Qian, H., York, E.J., Stewart, J.M. & Baldwin, R.L. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers 31, 1463–1470 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Brennwald, J. Gerst, S. Keränen and J. Walker for plasmids, S. Kyin and D. Little for DNA sequencing and mass spectrometry, and G. Waters, P. Brennwald, J. Carey, P. Hanson, G. McLendon, and A. Nagi for discussion and critical comments on the manuscript. The analytical ultracentrifuge was purchased with funds from a grant to R.F. from the Zimmer Corporation. This work was funded in part by an American Heart Association Fellowship (M.M.) and Searle Scholar and Beckman Young Investigator awards (F.M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick M. Hughson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, K., Munson, M., Miller, R. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat Struct Mol Biol 5, 793–802 (1998). https://doi.org/10.1038/1834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing