Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of rat ADP-ribosylation factor-1 (ARF-1) complexed to GDP determined from two different crystal forms

Abstract

The ARFs are a family of 21,000 Mr proteins with biological roles in constitutive secretion and activation of phospholipase D. The structure of ARF-1 complexed to GDP determined from two crystal forms reveals a topology that is similar to that of the protein p21 ras with two differences: an additional amino-terminal helix and an extra β-strand. The Mg2+ ion in ARF-1 displays a five-coordination sphere; this feature is not seen in p21 ras, due to a shift in the relative position of the DXXG motif between the two proteins. The occurrence of a dimer in one crystal form suggests that ARF-1 may dimerize during its biological function. The dimer interface involves a region of the ARF-1 molecule that is analogous to the effector domain in p21 ras and may mediate interactions with its effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kahn, R.A. & Gilman, A.G. The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J. biol. Chem 261, 7906–7911 (1986).

    CAS  PubMed  Google Scholar 

  2. Moss, J. & Vaughan, M. ADP-ribosylation factors, 20,000 Mr guanine nucleotide-binding protein activators of cholera toxin and components of intra cellular vesicular transport systems. Cell. Signalling 5, 367–379 (1993).

    CAS  PubMed  Google Scholar 

  3. Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R.A. & Rothman, J.E. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: A novel role for a GTP-binding protein. Cell 67, 239–253 (1991).

    CAS  PubMed  Google Scholar 

  4. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    CAS  PubMed  Google Scholar 

  5. Orci, L., Palmer, D.J., Amherdt, M. & Rothman, J.E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364, 732–734 (1993).

    CAS  Google Scholar 

  6. Palmer, D.J., Helms, J.B., Beckers, C.J.M., Orci, L. & Rothman, J.E. Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. biol. Chem. 268, 12083–12089 (1993).

    CAS  PubMed  Google Scholar 

  7. Donaldson, J.G., Cassel, D., Kahn, R.A. & Klausner, R.D. ADP-ribosylation factor, a small GTP binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc. natn. Acad Sci. U.S.A. 89, 6408–6412 (1992).

    CAS  Google Scholar 

  8. Helms, J.B., Palmer, D.J. & Rothman, J.E. Two distinct populations of ARF bound to Golgi membranes. J. Cell Biol. 121, 751–760 (1993).

    CAS  PubMed  Google Scholar 

  9. Tanigawa, G., Orci, L., Amherdt, M., Ravazzola, M., Helms, J.B. & Rothman, J.E. Hydrolysis of bound GTP by ARF protein triggers uncoatingof Golgi-derived COP-coated vesicles J. Cell Biol. 123, 1365–1371 (1993).

    CAS  PubMed  Google Scholar 

  10. Donaldson, J.G. & Klausner, R.D. ARF: a key regulatory switch in membrane traffic and organelle structure. Cur. Op. cell Biol. 6, 527–379 (1994).

    CAS  Google Scholar 

  11. Tsai, S.-C., Adamik, R., Moss, J. & Vaughan, M. Identification of a brefeldin A-insensitive guanine nucleotide exchange protein for ADP-ribosylation factor in bovine brain. Proc. natn. Acad Sci. U.S.A. 91, 3063–3066 (1994).

    CAS  Google Scholar 

  12. Makler, V., Cukierman, M.R., Admon, A. & Cassel, D. ADP-ribosylation factor-directed GTPase-activing protein. J. biol. Chem. 270, 5232–5237 (1995).

    CAS  PubMed  Google Scholar 

  13. Terui, I., Kahn, R.A. & Randazzo, P.A. Effects of acid phospholipids on nucleotide exchange properties of ADP-ribosylation factor-1. Evidence for specific interaction with phosphatidylinositol 4, 5-bisphosphate. J. biol. Chem. 269, 28130–28135 (1994).

    CAS  PubMed  Google Scholar 

  14. Cockcroft, S. et al. Phospholipase D: A downstream effector of ARF in granulocytes. Science 263, 523–526 (1994).

    CAS  PubMed  Google Scholar 

  15. Stutchfield, J. & Cockcroft, S. Correlation between secretion and phospholipase D activation in differentiated HL60 cells. Biochem. J. 293, 649–655 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Greasley, S.E., Jhoti, H., Fensome, A.C., Cockcroft, S., Thomas, G.M.H. & Bax, B. Crystallisation and preliminary X-ray diffraction studies on ADP-ribosylation factor 1. J. molec. Biol. 244, 651–653 (1994).

    CAS  PubMed  Google Scholar 

  17. Amor, J.C., Harrison, D.H., Kahn, R.A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994).

    CAS  PubMed  Google Scholar 

  18. Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. Structural determinants of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    CAS  PubMed  Google Scholar 

  19. Kjeldgaard, M. & Nyborg, J. Refined structure of elongation factor EF-Tu from Escherichia coli. J. molec. Biol. 223, 721–742 (1992).

    CAS  PubMed  Google Scholar 

  20. Czworkowski, J., Wang, J., Steitz, T.A. & Moore, P.B. The crystal structure of elongation factor G complexed with GDP at 2.7 Å resolution. EMBO J. 13, 3661–3668 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Scheffzek, K., Klede, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of a nuclear ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).

    CAS  PubMed  Google Scholar 

  22. Janin, J. & Chothia, C. The structure of protein-protein recognition sites. J. biol. Chem. 265, 16027–16030 (1990).

    CAS  PubMed  Google Scholar 

  23. Schaber, M.D. et al. Ras interaction with the GTPase-activating protein (GAP). Proteins Struct. Funct. Genet. 6, 306–315 (1989).

    CAS  PubMed  Google Scholar 

  24. Weiss, O., Holden, J., Rulka, C. & Kahn, R.A. Nucleotide binding and cofactor activities of purified Bovine brain and bacterially expressed ADP-ribosylation factor. J. biol. Chem. 264, 21066–21072 (1989).

    CAS  PubMed  Google Scholar 

  25. Deerfield, D.W., Fox, D.J., Head-Gorden, M., Hiskey, R.G. & Pedersen, L.G. The first solvation shell of magnesium ion in a model protein environment with formate, water and X-NH3, H2S, imidazole, formaldehyde and chloride as ligands: An ab initio study. Proteins Struct. Funct. Genet. 21, 244–255 (1995).

    CAS  PubMed  Google Scholar 

  26. Graves, B.J. et al. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 367, 532–538 (1994).

    CAS  PubMed  Google Scholar 

  27. Tong, L., deVos, A.M., Milburn, M.V. & Kim, S.-H. Crystal structures at 2.2Å resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. molec. Biol. 217, 503–516 (1991).

    CAS  PubMed  Google Scholar 

  28. Segal, M., Marbach, I., Willumsen, B.M. & Levitzki, A. Two distinct regions of ras participate in functional interaction with GDP-GTP exchangers. Eur. J. Biochem. 228, 96–101 (1995).

    CAS  PubMed  Google Scholar 

  29. Matthews, B.W. Solvent content of protein crystals. J. molec. Biol. 33, 491–497 (1968).

    CAS  PubMed  Google Scholar 

  30. Messerschmidt, A. & Pflugrath, J. Crystal orientation and X-ray pattern prediction routines for area detector diffractometer systems in macromolecular crystallography. J. appl. Cyrstallogr. 20, 306–315 (1987).

    CAS  Google Scholar 

  31. Leslie, A.G.W., Brick, P. & Wonacott, A.T. MOSFLM. Daresbury Lab. Inf. Quart. Protein Crystallogr. 18, 33–39 (1986).

    Google Scholar 

  32. Collaborative Computer Project No. 4 The CCP4 Suite: Programs for Protein Crystallography. Acta crystallogr. D50, 760–763 (1994).

  33. Wang, B.-C. Resolution of Phase Ambiguity in Macromolecular Crystallography. Meth. Enzymol. 115, 90–112 (1985).

    CAS  Google Scholar 

  34. Bricogne, G. Geometric sources of redundancy in data and their use for determination. Acta crystallogr. A 30, 395–405 (1974).

    CAS  Google Scholar 

  35. Kleywegt, G.T. & Jones, T.A. in From First Map to Final Model. (eds Bailey, S., Hubbard, R. and Waller, D.) 59–66 (SERC Daresbury Laboratory, Warrington, UK; 1994).

    Google Scholar 

  36. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallogr. A 47, 110–119 (1991).

    PubMed  Google Scholar 

  37. Brünger, A.T., Kuriyan, J. & Karplus, M., Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    PubMed  Google Scholar 

  38. Brünger, A.T. X-PLOR Version 3.1. Yale University, New Haven (1992).

    Google Scholar 

  39. Jones, T.A., Interactive computer Graphics:FRODO. Meth. Enzym. 115, 157–171 (1985).

    CAS  PubMed  Google Scholar 

  40. Read, R.J., Fourier coefficients for maps using phases from partial structures with errors. Acta crystallogr. A 42, 140–149 (1986).

    Google Scholar 

  41. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    PubMed  Google Scholar 

  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    CAS  Google Scholar 

  43. Navaza, J. AMoRe: an automated package for molecular replacement. Acta crystallogr. D 50, 157–163 (1994).

    Google Scholar 

  44. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition-of hydrogen bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    CAS  PubMed  Google Scholar 

  45. Nicholls, A. GRASP: Graphical representation and analysis of surface properties. Dept. of Biochemistry and Molecular Biophysics, Columbia University New York (1992).

    Google Scholar 

  46. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Prot. Engng. 8, 127–134 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greasley, S., Jhoti, H., Teahan, C. et al. The structure of rat ADP-ribosylation factor-1 (ARF-1) complexed to GDP determined from two different crystal forms. Nat Struct Mol Biol 2, 797–806 (1995). https://doi.org/10.1038/nsb0995-797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0995-797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing