Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the human prion protein reveals a mechanism for oligomerization

Abstract

The pathogenesis of transmissible encephalopathies is associated with the conversion of the cellular prion protein, PrPC, into a conformationally altered oligomeric form, PrPSc. Here we report the crystal structure of the human prion protein in dimer form at 2 Å resolution. The dimer results from the three-dimensional swapping of the C-terminal helix 3 and rearrangement of the disulfide bond. An interchain two-stranded antiparallel β-sheet is formed at the dimer interface by residues that are located in helix 2 in the monomeric NMR structures. Familial prion disease mutations map to the regions directly involved in helix swapping. This crystal structure suggests that oligomerization through 3D domain-swapping may constitute an important step on the pathway of the PrPC → PrPSc conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The human prion protein dimer.
Figure 2: Comparison of the human prion protein dimer (crystal structure) and monomer (NMR structure).
Figure 3: Stereo view of 29.0–2.0 Å resolution omit |Fo| − |Fc| electron density contoured at 2 σ for the two antiparallel β-strands containing residues Thr 188–Gly195 in the switch region at the prion protein dimer interface.
Figure 4: Mapping of residues relevant to disease transmission to the prion dimer structure, shown as a stereo Cα trace.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Prusiner, S.B. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  2. Horwich, A.L. & Weissman, J.S. Cell 89, 499–510 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  3. Bruce, M.E. et al. Nature 389, 498–501 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  4. Caughey, B.W. et al. Biochemistry 30, 7672–7680 (1991).

    Article  CAS  PubMed Central  Google Scholar 

  5. Riek, R. et al. Nature 382, 180–182 (1996).

    Article  CAS  Google Scholar 

  6. Donne, D.G. et al. Proc. Natl. Acad. Sci. USA 94, 13452–13457 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  7. Zahn, R. et al. Proc. Natl. Acad. Sci. USA 97, 145–150 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  8. Lopez, G.F., Zahn, R., Riek, R. & Wuthrich, K. Proc. Natl. Acad. Sci. USA 97, 8334–8339 (2000).

    Article  Google Scholar 

  9. Morillas, M., Swietnicki, W., Gambetti, P. & Surewicz, W.K. J. Biol. Chem. 274, 36859–36865 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  10. Zahn, R., von Schroetter, C. & Wuthrich, K. FEBS Lett. 417, 400–404 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  11. Swietnicki, W., Morillas, M., Chen, S.G., Gambetti, P. & Surewicz, W.K. Biochemistry 39, 424–431 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  12. Maiti, N.R. & Surewicz, W.K. J. Biol. Chem. 176, 2427–2431 (2001).

    Article  Google Scholar 

  13. Zhang, Y., Swietnicki, W., Zagorski, M.G., Surewicz, W.K. & Sonnichsen, F.D. J. Biol. Chem. 275, 33650–33654 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  14. Bennett, M.J., Choe, S. & Eisenberg, D. Proc. Natl. Acad. Sci. USA 91, 3127–3131 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  15. Janowski, R. et al. Nature Struct. Biology 8, 316–320 (2001).

    Article  CAS  Google Scholar 

  16. Piccoli, R. et al. Proc. Natl. Acad. Sci. USA 89, 1870–1874 (1992).

    Article  CAS  PubMed Central  Google Scholar 

  17. Lawrence, M.C. & Colman, P.M. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  18. Conte, L.L., Chothia, C. & Janin, J. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  PubMed Central  Google Scholar 

  19. Gambetti, P. et al. In Prion biology and diseases (ed. Prusiner, S.B.) 509–583 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1999).

    Google Scholar 

  20. Kaneko, K. et al. Proc. Natl. Acad. Sci. USA 94, 10069–10074 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  21. Jarrett, J.T., Lansbury, P.T. Jr., Cell 73, 1055–1058 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  22. Priola, S.A., Caughey, B., Wehrly, K. & Chesebro, B. J. Biol. Chem. 270, 3299–3305 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  24. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  25. de la Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  26. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr.A 47, 110–119 (1991).

    Article  PubMed Central  Google Scholar 

  28. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  29. Kraulis, P.J. J. Appl. Crystallogr.. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Esnouf, R.M. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  31. Merritt, E.A. & D. J. Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  32. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Diffraction data were measured at APS beamline 19-ID and at ALS beamline 5.0.2., both supported by the US DOE, and at BNL NSLS beamline X25, supported by the U.S. DOE and the NIH. We are grateful to the CCF/LRI Computer Core for facilities support, to S. Ginell and T. Earnest for beamline support and especially to F. van den Akker for many helpful discussions. This work was supported by grants from the NSF and AHA to V.C.Y. and from the NIH to W.K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivien C. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knaus, K., Morillas, M., Swietnicki, W. et al. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Mol Biol 8, 770–774 (2001). https://doi.org/10.1038/nsb0901-770

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing