Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hot spots in β-catenin for interactions with LEF-1, conductin and APC

Abstract

Interactions between β-catenin and LEF-1/TCF, APC and conductin/axin are essential for wnt-controlled stabilization of β-catenin and transcriptional activation. The wnt signal transduction pathway is important in both embryonic development and tumor progression. We identify here amino acid residues in β-catenin that distinctly affect its binding to LEF-1/TCF, APC and conductin. These residues form separate surface clusters, termed hot spots, along the armadillo superhelix of β-catenin. We also show that complementary charged and hydrophobic amino acids are required for formation of the bipartite β-catenin–LEF-1 transcription factor. Moreover, we demonstrate that conductin/axin binding to β-catenin is essential for β-catenin degradation, and that APC acts as a cofactor of conductin/axin in this process. Binding of APC to conductin/axin activates the latter and occurs between their SAMP and RGS domains, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro mutagenesis of the armadillo domain of β-catenin.
Figure 3: Hot spots in β-catenin for LEF-1, APC or conductin binding.
Figure 2: Mutations in β-catenin that block LEF-1, APC or conductin binding.
Figure 4: Amino acids in LEF-1 essential for β-catenin binding.
Figure 5: Conductin-induced or APC-induced degradation of β-catenin mutants.
Figure 6: Conductin and APC synergize phosphorylation of β-catenin.

Similar content being viewed by others

References

  1. Peifer, M. & Wieschaus, E. The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63, 1167–1176 (1990).

    Article  CAS  Google Scholar 

  2. McCrea, P.D., Turck, C.W. & Gumbiner, B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 254,1359–1361 (1991).

    Article  CAS  Google Scholar 

  3. Cadigan, K.M. & Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  4. Näthke, I.S., Hinck, L., Swedlow, J.R., Papkoff, J. & Nelson, W.J. Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J. Cell Biol. 125, 1341–1352 (1994).

    Article  Google Scholar 

  5. Hülsken, J., Birchmeier, W. & Behrens, J. E-cadherin and APC compete for the interaction with β-catenin and the cytoskeleton. J. Cell Biol. 127, 2061–2069 (1994).

    Article  Google Scholar 

  6. Aberle, H., et al. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107, 3655–3663 (1994).

    CAS  PubMed  Google Scholar 

  7. Funayama, N., Fagotto, F., McCrea, P. & Gumbiner, B.M. Embryonic axis induction by the armadillo repeat domain of β-catenin: evidence for intracellular signaling. J. Cell Biol. 128, 959–968 (1995).

    Article  CAS  Google Scholar 

  8. Willert, K. & Nusse R. β-Catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev. 8, 95–102 (1998).

    Article  CAS  Google Scholar 

  9. Peifer, M., Pai, L.M. & Casey M. Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev. Biol. 166, 543–556 (1994).

    Article  CAS  Google Scholar 

  10. Rubinfeld, B., et al. Binding of GSK-3β to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996).

    Article  CAS  Google Scholar 

  11. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl. Acad. Sci. USA 92, 3046–3050 (1995).

    Article  CAS  Google Scholar 

  12. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  Google Scholar 

  13. Behrens, J., et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  Google Scholar 

  14. Molenaar, M., et al. XTcf 3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  15. He, X., et al. A member of the frizzled protein family mediating axis induction by Wnt-5A. Science 275, 1652–1654 (1997).

    Article  CAS  Google Scholar 

  16. Tetsu, O. & McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  17. Zeng, L., et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).

    Article  CAS  Google Scholar 

  18. Behrens, J., et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK-3β. Science 280, 596–599 (1998).

    Article  CAS  Google Scholar 

  19. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).

    Article  CAS  Google Scholar 

  20. Winston, JT., et al. The SCF β-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in I kappa B α- and β-catenin and stimulates I kappa B α ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  Google Scholar 

  21. Rubinfeld, B., et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  Google Scholar 

  22. Morin, P.J., et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  23. Korinek, V., et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  24. Polakis, P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim. Biophys. Acta 1332, F127–147 (1997).

    CAS  PubMed  Google Scholar 

  25. Rubinfeld, B., et al. Association of the APC gene product with β-catenin. Science 262, 1731–1734 (1993).

    Article  CAS  Google Scholar 

  26. Su, L.-K., Vogelstein, B. & Kinzler, K.W. Association of the APC tumor suppressor protein with catenins. Science 262, 1734–1737 (1993).

    Article  CAS  Google Scholar 

  27. Stappert, J. & Kemler, R. A short core region of E-cadherin is essential for catenin binding and is highly phosphorylated. Cell Adhes. Commun. 2, 319–327 (1994).

    Article  CAS  Google Scholar 

  28. Huber, O., et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10 (1996).

    Article  CAS  Google Scholar 

  29. Ikeda, S., et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3 β and β-catenin and promotes GSK-3 β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371–1384 (1998).

    Article  CAS  Google Scholar 

  30. Orsulic, S. & Peifer, M. An in vivo structure-function study of armadillo, the β-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J. Cell Biol. 134, 1283–1300 (1996).

    Article  CAS  Google Scholar 

  31. van de Wetering, M., et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  32. Sadot, E., Simcha, I., Shtutman, M., Ben-Ze'ev, A. & Geiger, B. Inhibition of β-catenin-mediated transactivation by cadherin derivatives. Proc. Natl. Acad. Sci. USA 22, 15339–15344 (1998).

    Article  Google Scholar 

  33. Orsulic, S., Huber, O., Aberle, H., Arnold, S. & Kemler, R. E-cadherin binding prevents β-catenin nuclear localization and β-catenin/LEF-1-mediated transactivation. J. Cell Sci. 112, 1237–1245 (1999).

    CAS  PubMed  Google Scholar 

  34. Huber, A.H., Nelson, W.J. & Weis, W.I. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 90, 871–882 (1997).

    Article  CAS  Google Scholar 

  35. Brunner, E., Peter, O., Schweizer, L. & Basler, K. Pangolin encodes a LEF-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833 (1997).

    Article  CAS  Google Scholar 

  36. Hsu, S.C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol. Cell. Biol. 18, 4807–4818 (1998).

    Article  CAS  Google Scholar 

  37. Omer, C.A., Miller, P.J., Diehl, R.E. & Kral, A.M. Identification of Tcf4 residues involved in high-affinity β-catenin binding. Biochem. Biophys. Res. Commun. 256, 584–590 (1999).

    Article  CAS  Google Scholar 

  38. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S. & Polakis, P. Loss of β-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 57, 4624–4630 (1997).

    CAS  PubMed  Google Scholar 

  39. Clackson, T., Ultsch, M.H., Wells, J.A & de Vos, A.M. Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity. J. Mol. Biol. 17, 1111–1128 (1998).

    Article  Google Scholar 

  40. de La Coste, A., et al. Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl. Acad. Sci. USA 95, 8847–8851 (1998).

    Article  CAS  Google Scholar 

  41. Chan, E.F., Gat, U., McNiff, J.M. & Fuchs, E. A common human skin tumor is caused by activating mutations in β-catenin. Nature Genet. 21, 410–413 (1999).

    Article  CAS  Google Scholar 

  42. Ilyas, M., Tomlinson, I.P., Rowan, A., Pignatelli, M. & Bodmer, W.F. β-catenin mutations in cell lines established from human colorectal cancers. Proc. Natl. Acad. Sci. USA 94, 10330–10334 (1997).

    Article  CAS  Google Scholar 

  43. Kitagawa, M., et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β–catenin. EMBO J. 18, 2401–2410 (1999).

    Article  CAS  Google Scholar 

  44. Hart, M.J, de los Santos, R., Albert, I.N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK-3β. Curr. Biol. 8, 573–581 (1998).

    Article  CAS  Google Scholar 

  45. Salic, A., Lee, E., Mayer, L. & Kirschner, M.W. Control of β-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell 5, 523–532 (2000).

    Article  CAS  Google Scholar 

  46. Polakis P. The oncogenic activation of β-catenin. Curr. Opin. Genet. Dev. 9, 15–21 (1999).

    Article  CAS  Google Scholar 

  47. Smits, R., et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 13, 1309–1321 (1999).

    Article  CAS  Google Scholar 

  48. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–283 (1991).

    Article  CAS  Google Scholar 

  49. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  50. Giese, K. & Grosschedl, R. LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J. 12, 4667–4676 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Birchmeier (Berlin), A.H. Huber and W.I. Weis (Stanford) for critical reading of the manuscript and for helpful discussions, H. Clevers (Utrecht) for the IIA1.6 cells and reporter constructs, W. Altenhofen (Ludwigshafen), J. Joachim Müller and T. Schwartz (Berlin) for help with the analysis of structural data of β-catenin, and the Deutsche Forschungsgemeinschaft for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Birchmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Kries, J., Winbeck, G., Asbrand, C. et al. Hot spots in β-catenin for interactions with LEF-1, conductin and APC. Nat Struct Mol Biol 7, 800–807 (2000). https://doi.org/10.1038/79039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing