Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase

Abstract

Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcone synthesized by chalcone synthase (CHS) into (2S)-naringenin, an essential compound in the biosynthesis of anthocyanin pigments, inducers of Rhizobium nodulation genes, and antimicrobial phytoalexins. The 1.85 Å resolution crystal structure of alfalfa CHI in complex with (2S)-naringenin reveals a novel open-faced β-sandwich fold. Currently, proteins with homologous primary sequences are found only in higher plants. The topology of the active site cleft defines the stereochemistry of the cyclization reaction. The structure and mutational analysis suggest a mechanism in which shape complementarity of the binding cleft locks the substrate into a constrained conformation that allows the reaction to proceed with a second-order rate constant approaching the diffusion controlled limit. This structure raises questions about the evolutionary history of this structurally unique plant enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction and structure of CHI.
Figure 2: (2S)-Naringenin binding and structure of the active site cleft of CHI.
Figure 3: Proposed enzyme mediated stereochemical control of the cyclization reaction.
Figure 4: Proposed reaction mechanism of CHI.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Dooner, H.K., Robbins, T.P. & Jorgensen, R.A. Annu. Rev. Genet. 25, 173–199 (1991).

    Article  CAS  Google Scholar 

  2. Long, S.R. Cell 56, 203–214 (1989).

    Article  CAS  Google Scholar 

  3. Dixon, R.A. & Paiva, N.L. Plant Cell 7, 1085–1097 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  4. Bohm, B.A. Introduction to Flavonoids (Harcourt, Singapore; 1998).

    Google Scholar 

  5. Setchell, K.D.R. & Cassidy, A. J. Nutr. 129, 758S–767S (1999).

    Article  CAS  Google Scholar 

  6. Dixon, R.A. & Steele, C.J. Trends Plant Sci. 4, 394–400 (1999).

    Article  CAS  Google Scholar 

  7. Davies, K.M., Bloor, S.J., Spiller, G.B. & Deroles, S.C. Plant J. 13, 259–266 (1998).

    Article  CAS  Google Scholar 

  8. Jung, W. et al. Nature Biotech. 18, 208–212 (2000).

    Article  CAS  Google Scholar 

  9. DellaPenna, D. Science 285, 375–379 (1999).

    Article  CAS  Google Scholar 

  10. Ferrer, J.L., Jez, J.M., Bowman, M.E., Dixon, R.A. & Noel, J.P. Nature Struct. Biol. 6, 775–784 (1999).

    Article  CAS  Google Scholar 

  11. van Tunen, A.J., Mur, L.A., Recourt, K., Gerats, A.G. & Mol, J.N. Plant Cell 3, 39–48 (1991).

    Article  CAS  PubMed Central  Google Scholar 

  12. Firmin, J.L., Wilson, K.E., Rossen, L. & Johnston, A.W.B. Nature 324, 90–92 (1986).

    Article  CAS  Google Scholar 

  13. Bednar, R.A. & Hadcock, J.R. J. Biol. Chem. 263, 9582–9588 (1988).

    CAS  PubMed  Google Scholar 

  14. Dixon, R.A., Blyden, E.R., Robbins, M.P., van Tunen, A.J. & Mol, J.N. Phytochemistry 27, 2801–2808 (1988).

    Article  CAS  Google Scholar 

  15. McKhann, H.I. & Hirsch, A.M. Plant Mol. Biol. 24, 767–777 (1994).

    Article  CAS  Google Scholar 

  16. Sander, C. & Schneider, R. Proteins 9, 56–68 (1991).

    Article  CAS  PubMed Central  Google Scholar 

  17. Altschul, S.F. et al. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  18. Bednar, R.A., Fried, W.B., Lock, Y.W. & Pramanik, B. J. Biol. Chem. 264, 14272–14276 (1989).

    CAS  PubMed  Google Scholar 

  19. Hahlbrock, K., Wong, E., Schill, L. & Grisebach, H. Phytochemistry 9, 949–958 (1970).

    Article  CAS  Google Scholar 

  20. Boland, M.J. & Wong, E. Bioorg. Chem. 8, 1–8 (1979).

    Article  CAS  Google Scholar 

  21. Rathmell, W.G. & Bendall, D.S. Biochem. J. 127, 125–132 (1972).

    Article  CAS  PubMed Central  Google Scholar 

  22. Jencks, W.P. Catalysis in Chemistry and Enzymology (McGraw-Hill, New York; 1969).

    Google Scholar 

  23. Bruice, T.C. & Pandit, U.K. J. Am. Chem. Soc. 82, 5858–5865 (1960).

    Article  CAS  Google Scholar 

  24. Page, M.I. & Jencks, W.P. Proc. Natl. Acad. Sci. USA 68, 1678–1683 (1971).

    Article  CAS  PubMed Central  Google Scholar 

  25. Winkel-Shirley, B. Physiol. Plant. 107, 142–149 (1999).

    Article  CAS  Google Scholar 

  26. Hrazdina, G. & Wagner, G.J. Arch. Biochem. Biophys. 237, 88–100 (1985).

    Article  CAS  Google Scholar 

  27. Hrazina, G., Zobel, A.M. & Hoch, H.C. Proc. Natl. Acad. Sci. USA 84, 8966–8970 (1987).

    Article  Google Scholar 

  28. Burbulis, I.E. & Winkel-Shirley, B. Proc. Natl. Acad. Sci. USA 96, 12929–12934 (1999).

    Article  CAS  Google Scholar 

  29. Graham, L.E., Cook, M.E. & Busse, J.S. Proc. Natl. Acad. Sci. USA 97, 4535–4540 (2000).

    Article  CAS  Google Scholar 

  30. Jez, J.M., Ferrer, J.-L., Bowman, M.E., Dixon, R.A. & Noel, J.P. Biochemistry 39, 890–902 (2000).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  32. Collaborative Computational Project, Number 4. Acta Crystallogr. D 53, 240–255 (1994).

  33. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  34. Otwinowski, Z. ML-PHARE in Daresbary Study Weekend Proceedings (CCP4, SERCDaresbary Laboratory, Warrington, UK; 1991).

    Google Scholar 

  35. de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  36. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  37. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. D 49, 148–157 (1993).

    Google Scholar 

  38. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed Central  Google Scholar 

  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  40. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  41. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  42. Amundsen, S., et al. POV-Ray: persistence of vision ray-tracer. http://www.povray.org (1997).

    Google Scholar 

Download references

Acknowledgements

We thank A. Hirsch (UCLA) for providing the CHI cDNA. The SSRL Biotechnology Program is supported by the NIH, National Center for Research Resources, Biomedical Technology Program, and the DOE, Office of Biological and Environmental Research. This work was supported by a grant from the National Science Foundation awarded to J.P.N. J.M.J. is a NIH Postdoctoral Research Fellow and also received support from the Hoffman Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Noel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jez, J., Bowman, M., Dixon, R. et al. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Mol Biol 7, 786–791 (2000). https://doi.org/10.1038/79025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing