Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP

Abstract

Ffh is a component of a bacterial ribonucleoprotein complex homologous to the signal recognition particle (SRP) of eukaryotes. It comprises three domains that mediate both binding to the hydrophobic signal sequence of the nascent polypeptide and the GTP-dependent interaction of Ffh with a structurally homologous GTPase of the SRP receptor. The X-ray structures of the two-domain 'NG' GTPase of Ffh in complex with Mg2+GDP and GDP have been determined at 2.0 Å resolution. The structures explain the low nucleotide affinity of Ffh and locate two regions of structural mobility at opposite sides of the nucleotide-binding site. One of these regions includes highly conserved sequence motifs that presumably contribute to the structural trigger signaling the GTP-bound state. The other includes the highly conserved interface between the N and G domains, and supports the hypothesis that the N domain regulates or signals the nucleotide occupancy of the G domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Stereoview of the structure of the NG GTPase domain.
Figure 2: The nucleotide-binding site in the GDP structures (G2 and G1), and the apo structure (A1).
Figure 3: Comparison of the GDP-binding interactions in Ffh (G2) with those in Ras (4q21).
Figure 4: Functionally important flexibility in the structures of the NG domain.
Figure 5: Cartoon summarizing the structural consequences of binding of Mg2+GDP and GDP to NG.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Walter, P. & Johnson, A.E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87–119 (1994).

    Article  CAS  Google Scholar 

  2. Miller, J.D., Bernstein, H.D. & Walter, P. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367, 657–659 (1994).

    Article  CAS  Google Scholar 

  3. Kusters, R. et al. The functioning of the SRP receptor FtsY in protein-targeting in E. coli is correlated with its ability to bind and hydrolyse GTP. FEBS Lett. 372, 253–258 (1995).

    Article  CAS  Google Scholar 

  4. Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880–4886 (1997).

    Article  CAS  Google Scholar 

  5. Powers, T. & Walter, P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269, 1422–1424 (1995).

    Article  CAS  Google Scholar 

  6. Hauser, S., Bacher, G., Dobberstein, B. & Lütcke, H. A complex of the signal sequence binding protein and the SRP RNA promotes translocation of nascent proteins. EMBO J. 14, 5485–5493 (1995).

    Article  CAS  Google Scholar 

  7. Rapiejko, P.J. & Gilmore, R. Signal sequence recognition and targeting of ribosomes to the endoplasmic reticulum by the signal recognition particle do not require GTP. Mol. Biol. Cell 5, 887–897 (1994).

    Article  CAS  Google Scholar 

  8. Connolly, T. & Gillmore, R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610 (1989).

    Article  CAS  Google Scholar 

  9. Zopf, D., Bernstein, H., Johnson, A.E. & Walter, P. The methionine-rich domain of the 54 kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517 (1990).

    Article  CAS  Google Scholar 

  10. Römisch, K., Webb, J., Lingelbäch, K., Gausepohl, H. & Dobberstein, B. The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain. J. Cell Biol. 111, 1793–1802 (1990).

    Article  Google Scholar 

  11. Lütcke, H., High, S., Römisch, K., Ashford, A.J. & Dobberstein, B. The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J. 11, 1543–1551 (1992).

    Article  Google Scholar 

  12. Jagath, J.R., Rodnina, M.V., Lentzen, G. & Wintermeyer, W. Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli. Biochemistry 37, 15408–15413 (1998).

    Article  CAS  Google Scholar 

  13. Moser, C., Mol, O., Goody, R.S. & Sinning, I. The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc. Natl. Acad. Sci. USA 94, 11339–11344 (1997).

    Article  CAS  Google Scholar 

  14. Bacher, G., Lütcke, H., Jungnickel, B., Rapoport, T.A. & Dobberstein, B. Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Nature 381, 248–251 (1996).

    Article  CAS  Google Scholar 

  15. Miller, J.D., Wilhelm, H., Gierasch, L., Gilmore, R. & Walter, P. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366, 351–354 (1993).

    Article  CAS  Google Scholar 

  16. Rapiejko, P.J. & Gilmore, R. Empty site forms of the SRP54 and SR alpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 89, 703–713 (1997).

    Article  CAS  Google Scholar 

  17. Freymann, D.M., Keenan, R.J., Stroud, R.M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997).

    Article  CAS  Google Scholar 

  18. Montoya, G., Svensson, C., Luirink, J. & Sinning, I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–369 (1997).

    Article  CAS  Google Scholar 

  19. Zheng, N. & Gierasch, L.M. Domain interactions in E. coli SRP: stabilization of M domain by RNA is Required for effective signal sequence modulation of NG domain. Mol. Cell 1, 1–20 (1997).

    Article  Google Scholar 

  20. Zopf, D., Bernstein, H.D. & Walter, P. GTPase domain of the 54-kD subunit of the mammalian signal recognition particle is required for protein translocation but not for signal sequence binding. J. Cell Biol. 120, 1113–1121 (1993).

    Article  CAS  Google Scholar 

  21. Newitt, J.A. & Bernstein, H.D. The N-domain of the signal recognition particle 54-kDa subunit promotes efficient signal sequence binding. Eur. J. Biochem. 245, 720–729 (1997).

    Article  CAS  Google Scholar 

  22. Bourne, H.R., Sanders, D.A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    Article  CAS  Google Scholar 

  23. Kjeldgaard, M., Nyborg, J. & Clark, B.F.C. The GTP binding motif: variations on a theme. FASEB J. 10, 1347–1368 (1996).

    Article  CAS  Google Scholar 

  24. Sprang, S.R. G Protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997).

    Article  CAS  Google Scholar 

  25. Kjeldgaard, M. & Nyborg, J. Refined structure of elongation factor Tu from Escherichia coli. J. Mol. Biol. 223, 721–742 (1992).

    Article  CAS  Google Scholar 

  26. Tong, L.A., de Vos, A.M., Milburn, M.V. & Kim, S.H. Crystal structures at 2.2 Å resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol. 217, 503–516 (1991).

    Article  CAS  Google Scholar 

  27. Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).

    Article  CAS  Google Scholar 

  28. Al-Karadaghi, S., Ævarsson, A., Garber, M., Zheltonosova, J. & Liljas, A. The structure of the elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4, 555–565 (1996).

    Article  CAS  Google Scholar 

  29. Czworkowski, J., Wang, J., Steitz, T.A. & Moore, P.B. The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution. EMBO J. 13, 3661–3668 (1994).

    Article  CAS  Google Scholar 

  30. Mixon, M.B. et al. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270, 954–960 (1995).

    Article  CAS  Google Scholar 

  31. Keenan, R.J., Freymann, D.M., Walter, P. & Stroud, R.M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998).

    Article  CAS  Google Scholar 

  32. Berghuis, A.M., Lee, E., Raw, A.S., Gilman, A.G. & Sprang, S.R. Structure of the GDP-Pi complex of Gly203→Ala Gialpha1: a mimic of the ternary product complex of Galpha-catalyzed GTP hydrolysis. Structure 4, 1277–1290 (1996).

    Article  CAS  Google Scholar 

  33. Farmery, M., Macao, B., Larsson, T. & Samuelsson, T. Binding of GTP and GDP induces a significant conformational change in the GTPase domain of Ffh, a bacterial homologue of the SRP 54 kDa subunit. Biochim. Biophys. Acta 1385, 61–68 (1998).

    Article  CAS  Google Scholar 

  34. Bohm, A., Gaudet, R. & Sigler, P.B. Structural aspects of heterotrimeric G-protein signaling. Curr. Opin. Biotechnol. 8, 480–487 (1997).

    Article  CAS  Google Scholar 

  35. Onrust, R. et al. Receptor and betagamma binding sites in the alpha subunit of the retinal G protein transducin. Science 275, 381–384 (1997).

    Article  CAS  Google Scholar 

  36. Teng, T.-Y. Mounting of crystals for macromolecular crystallography in a free-standing thin film. J. Appl. Crystallogr. 23, 387–391 (1990).

    Article  CAS  Google Scholar 

  37. Otwinowski, Z. Oscillation data reduction program. In Data collection and processing (eds Sawyer, L., Isaacs, N.W. & Bailey, S.) 55–62 (SERC Daresbury Laboratory, Warrington, United Kingdom; 1993).

    Google Scholar 

  38. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  39. Brünger, A.T. X-PLOR: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  40. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  41. Jiang, J.-S. & Brünger, A.T. Protein hydration observed by X-ray diffraction. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  Google Scholar 

  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  43. Glusker, J.P. Structural aspects of metal liganding to functional groups of proteins. Adv. Protein Chem. 42, 1–76 (1991).

    Article  CAS  Google Scholar 

  44. Kleywegt, G.J. & Jones, T.A. Detecting folding motifs and similarities in protein structures. Methods Enzymol. 277, 525–545 (1997).

    Article  CAS  Google Scholar 

  45. Evans, S.V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  46. Ihara, K. et al. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem. 273, 9656–9666 (1998).

    Article  CAS  Google Scholar 

  47. Hirshberg, M., Stockley, R.W., Dodson, G. & Webb, M.R. The crystal structure of human rac1, a member of the Rho family complexed with a GTP analogue. Nature Struct. Biol. 4, 147–151 (1997).

    Article  CAS  Google Scholar 

  48. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269–275 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Richardson of Duke University for an illuminating discussion. This work was begun while D.M.F. was a postdoctoral fellow in the laboratories of P.W. and R.M.S. It was supported by grants to P.W. and R.M.S. from the NIH and by the Herb Boyer Fund and the Biotechnology Program of the University of California. It is based in part on research conducted at the Stanford Synchrotron Radiation Laboratory (SSRL), a facility funded by the Department of Energy, Office of Basic Energy Sciences. P.W. is an investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Freymann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freymann, D., Keenan, R., Stroud, R. et al. Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP. Nat Struct Mol Biol 6, 793–801 (1999). https://doi.org/10.1038/11572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing