Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of cricket paralysis virus: the first view of a new virus family

Abstract

Numerous small, RNA-containing insect viruses are currently classified as picornaviruses, or as 'picorna-like', since they superficially resemble the true picornaviruses. Considerable evidence now suggests that several of these viruses are members of a distinct family. We have determined the gene sequence of the capsid proteins and the 2.4 Å resolution crystal structure of the cricket paralysis virus. While the genome sequence indicates that the insect picorna-like viruses represent a distinct lineage compared to true picornaviruses, the capsid structure demonstrates that the two groups are related. These viral genomes are, thus, best viewed as composed of exchangeable modules that have recombined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, The organization of a standard picornavirus genome, with the structural proteins (encoded in the P1 segment) at the 5' end.
Figure 2: The amino acid sequences of the capsid proteins from CrPV.
Figure 3: A stereoview of the electron density surrounding residues 2,228 to 2,232 (from strand βI), from the final 2.4 Å map.
Figure 4: a, The structure of the CrPV protomer (that is, the subunit comprising a single polypeptide chain prior to cleavage into the four subunits).
Figure 5: a, A space-filling representation of a single pentamer of poliovirus, showing the characteristic surface features of the canyon and 5-fold crest.
Figure 6: The interactions of the capsid proteins around the icosahedral 2-fold axis, seen from the inside of the capsid, looking towards the exterior.
Figure 7: The interactions of VP4 around the 5-fold axis, seen from the outside of the capsid looking towards the center of the particle.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Reinganum, C., O'Loughlin, G.T. & Hogan, T.W. A nonoccluded virus of the field crickets Teleogryllus oceanicus and T. commodus. J. Invertebr. Pathol. 16, 214–219 (1970).

    Article  Google Scholar 

  2. Jousset, F.X., Plus, N., Croizier, G. & Thomas, M. [Existence in Drosophila of 2 groups of picornavirus with different biological and serological properties]. [French]. Comptes Rendus Hebdomadaires des Seances de l Academie des Sciences - D: Sciences Naturelles 275, 3043–3046 (1972).

    CAS  Google Scholar 

  3. Johnson, K.N. & Christian, P.D. The novel genome organization of the insect picorna-like virus Drosophila C virus suggests this virus belongs to a previously undescribed virus family. J. Gen. Virol. 79, 191–203 ( 1998).

    Article  CAS  Google Scholar 

  4. Moore, N.F., Kearns, A. & Pullin, J.S.K. Characterization of cricket paralysis virus-induced polypeptides. J. Virol. 33, 1– 9 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. King, L.A. & Moore, N.F. Evidence for the presence of a genome-linked protein in two insect picornaviruses, cricket paralysis and Drosophila C viruses. FEMS Microbiol. Lett. 26, 121–127 (1988).

    Google Scholar 

  6. Christian, P.D. & Scotti, P.D. Picornaviruses in insects. In The insect viruses (eds. Miller, L.K. & Ball, L.A.) (Plenum Publishing Corporation, New York; 1999 ).

    Google Scholar 

  7. Murphy, F.A., et al. Virus taxonomy: sixth report of the International Committee on Taxonomy of Viruses (Springer-Verlag, New York & Vienna, 1995).

    Google Scholar 

  8. Scotti, P.D. The estimation of virus density in isopycnic cesium chloride gradients. J. Virol. Methods 12, 149–60 (1985).

    Article  CAS  Google Scholar 

  9. Jousset, F.X., Bergoin, M. & Revet, B. Characterization of the Drosophila C virus. J. Gen. Virol. 34, 269–283 (1977).

    Article  CAS  Google Scholar 

  10. Plus, N., Croizier, G., Reinganum, C. & Scotti, P.D. Cricket paralysis virus and Drosophila C virus: serological analysis and comparison of capsid polypeptides and host range. J. Invertebr. Pathol. 31, 296–302 ( 1978).

    Article  CAS  Google Scholar 

  11. Scotti, P.D., Longworth, J.F., Plus, N., Croizier, G. & Reinganum, C. The biology and ecology of strains of an insect small RNA virus complex. Adv. Virus Res. 26, 117–143 (1981).

    Article  CAS  Google Scholar 

  12. Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325 ( 1988).

    Article  CAS  Google Scholar 

  13. Jacobson, M.F. & Baltimore, D. Polypeptide cleavages in the formation of poliovirus proteins. Proc. Natl. Acad. Sci. USA 61, 77–84 (1968).

    Article  CAS  Google Scholar 

  14. Reavy, B. & Moore, N.F. The gene organization of a small RNA-containing insect virus: comparison with that of mammalian picornaviruses. Virology 131, 551–554 (1983).

    Article  CAS  Google Scholar 

  15. Koonin, E.V. & Gorbalenya, A.E. An insect picornavirus may have genome organization similar to that of caliciviruses. FEBS Lett. 297, 81–86 ( 1992).

    Article  CAS  Google Scholar 

  16. Moore, N.F., Reavy, B., Pullin, J.S.K. & Plus, N. The polypeptides induced in Drosophila cells by Drosophila C virus (strain Ouarzazate). Virology 112, 411– 416 (1981).

    Article  CAS  Google Scholar 

  17. Sasaki, J., Nakashima, N., Saito, H. & Noda, H. An insect picorna-like virus, Plautia stali intestine virus, has genes of capsid proteins in the 3´ part of the genome. Virology 244, 50–58 (1998).

    Article  CAS  Google Scholar 

  18. Hogle, J.M., Chow, M. & Filman, D.J. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229, 1358– 1365 (1985).

    Article  CAS  Google Scholar 

  19. Arnold, E. et al. The structure determination of a common cold virus, human rhinovirus-14. Acta Crystallogr. A43, 346 –361 (1987).

    Article  CAS  Google Scholar 

  20. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  21. Caspar, D.L.D. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1–24 ( 1962).

    Article  CAS  Google Scholar 

  22. Rossmann, M.G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145 –153 (1985).

    Article  CAS  Google Scholar 

  23. Colston, E. & Racaniello, V.R. Soluble receptor-resistant poliovirus mutants identify surface and internal capsid residues that control interaction with the cell receptor. EMBO J. 13, 5855–5862 (1994).

    Article  CAS  Google Scholar 

  24. Smith, T., et al. The site of attachment in human rhino virus 14 for antiviral agents that inhibit uncoating. Science 233, 1286–1293 (1986).

    Article  CAS  Google Scholar 

  25. Filman, D.J. et al. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 8, 1567–1579 (1989).

    Article  CAS  Google Scholar 

  26. Hadfield, A.T. et al. The refined structure of human rhinovirus 16 at 2.15 Å resolution: implications for the viral life cycle. Structure 5, 427–441 (1997).

    Article  CAS  Google Scholar 

  27. Muckelbauer, J.K. et al. The structure of coxsackievirus B3 at 3.5 Å resolution. Structure 3, 653–667 (1995).

    Article  CAS  Google Scholar 

  28. Heinz, B., Shepard, D. & Rueckert, R. Escape mutant analysis of a drug binding site can be used to map functions in the rhinovirus capsid. In Use of X-ray crystallography in the design of anti-viral agents (eds. Laver, W. & Air, G.) 173–186 (Academic Press, San–Diego, 1990).

    Chapter  Google Scholar 

  29. Kaplan, G., Freistadt, M.S. & Racaniello, V.R. Neutralization of poliovirus by cell receptors expressed in insect cells. J. Virol. 64, 4697– 4702 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Burroughs, J.N., Rowlands, D.J., Sangar, D.V., Talbot, P. & Brown, F. Further evidence for multiple proteins in the foot-and-mouth disease virus particle. J. Gen. Virol. 13, 73–84 (1971).

    Article  CAS  Google Scholar 

  31. Luo, M. et al. The atomic structure of Mengo virus at 3.0 Å resolution. Science 235, 182–191 ( 1987).

    Article  CAS  Google Scholar 

  32. Chow, M. et al. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327, 482– 486 (1987).

    Article  CAS  Google Scholar 

  33. Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 4, 2455–2468 (1995).

    Article  CAS  Google Scholar 

  34. Basavappa, R. et al. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 Å resolution. Protein Sci. 3, 1651– 1669 (1994).

    Article  CAS  Google Scholar 

  35. Zlotnick, A. et al. Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single asparatic acid residue. J. Biol. Chem. 269, 13680–13684 (1994).

    CAS  Google Scholar 

  36. Fisher, A.J. & Johnson, J.E. Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361, 176–179 (1993).

    Article  CAS  Google Scholar 

  37. Munshi, S., et al. The 2.8 Å structure of a T = 4 animal virus and its implications for membrane translocation of RNA. J. Mol. Biol. 261, 1–10 (1996).

    Article  CAS  Google Scholar 

  38. Jacobson, M.F., Asso, J. & Baltimore, D. Further evidence on the formation of poliovirus proteins. J. Mol. Biol. 49, 657– 669 (1970).

    Article  CAS  Google Scholar 

  39. Lomonossoff, G.P. & Johnson, J.E. The synthesis and structure of comovirus capsids. Prog. Biophys. Mol. Biol. 55, 107–137 (1991).

    Article  CAS  Google Scholar 

  40. Hendrix, R., Smith, M., Burns, R., Ford, M. & Hatfull, G. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. Proc. Natl. Acad. Sci. USA 96, 2192–2197 ( 1999).

    Article  CAS  Google Scholar 

  41. Scotti, P.D., Hoefakker, P. & Dearing, S. The production of cricket paralysis virus in suspension cultures of insect cell lines. J. Invertebr. Pathol. 68, 109–112 (1996).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. Data collection and processing. In Proceedings of the CCP4 Study Weekend: Data Collection and Processing (eds. Sawyer, L., Isaacs, N. & Baily, S.) 56–62 (Science and Engineering Research Council, Daresbury Laboratory, Daresbury, England, 1993).

    Google Scholar 

  43. Tong, L.A. & Rossmann, M.G. The locked rotation function. Acta Crystallogr. A46, 783– 792 (1990).

    Article  CAS  Google Scholar 

  44. Brünger, A.T. X-PLOR Version 3.0 (Yale University, New Haven, Connecticut, 1992).

    Google Scholar 

  45. CCP4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760– 763 (1994).

  46. Jones, T.A. A set of Averaging programs. In Proceedings of the CCP4 Study Weekend: Molecular replacement (eds. Dodson, E.J., Glover, S. & Wolf, W.) 91–105 (Science and Engineering Research Council, Daresbury Laboratory, Daresbury, England, 1992).

    Google Scholar 

  47. Kleywegt, G.J. & Jones, T.A. Halloween ... Masks and Bones. In Proceedings of the CCP4 Study Weekend: From First Map to Final Model (eds. Bailey, S., Hubbard, R. & Waller, D.) 56–66 (Science and Engineering Research Council, Daresbury Laboratory, Daresbury, England, 1994).

    Google Scholar 

  48. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472– 474 (1992).

    Article  Google Scholar 

  49. Rice, L.M. & Brünger, A.T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  50. Kabsch, W. & Sander, D. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  51. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capacities. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  52. Kraulis, P.J. MOLSCRIPT: a program to produce detailed and schematic plots of protein structure. J. Appl. Crystallogr. 24, 946– 950 (1991).

    Article  Google Scholar 

  53. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Weyts, K. Johnson, A. Claudianos, A.-M. Wilkes and N. Gibb for their assistance with cloning and sequencing of the CrPV genome; S. Dearing and P. Hoefakker for assistance with the production of CrPV; V. Reddy, X.F. Dong and A. Kumar for their help in data collection; H. Giesing for comments and discussions; and B. Sheehan for assistance with computing and figures for this manuscript. Data were collected on beamline F-1 of the Cornell High Energy Synchrotron Source (CHESS), with time awarded through CHESS proposal 205. This work was supported by funding from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tate, J., Liljas, L., Scotti, P. et al. The crystal structure of cricket paralysis virus: the first view of a new virus family. Nat Struct Mol Biol 6, 765–774 (1999). https://doi.org/10.1038/11543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing