Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein alchemy: Changing β-sheet into α-helix

Abstract

For most proteins the amino acid sequence determines the tertiary structure. The relative importance of the individual amino acids in specifying the fold, however, remains unclear. To highlight this. Creamer and Rose put forth the ‘Paracelsus challenge’: Design a protein with 50% sequence identity to a protein with a different fold. We have met this challenge by designing a sequence which retains 50% identity to a predominantly β-sheet protein, but which now adopts a four helix bundle conformation and possesses the attributes of a native protein. Our results emphasize that a subset of the amino acid sequence is sufficient to specify a fold, and have implications both for structure prediction and design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anfinsen, C. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  2. Lattman, E.E. & Rose, G.D. Protein folding-what's the question? Proc. Natl. Acad. Sci. USA 90, 439–441 (1993).

    Article  CAS  Google Scholar 

  3. Rose, G.D. & Creamer, T.P. Protein folding: predicting predicting. Proteins: Struct. Funct. Genet. 19, 1–3 (1994).

    Article  CAS  Google Scholar 

  4. Jones, D.T. et al. Towards Meeting the Paracelsus challenge: The design, synthesis, and characterization of paracelsin-43, an α-helical protein with over 50% sequence identity to an all-β protein. Proteins: Struct. Funct. Genet. 24, 502–513 (1996).

    Article  CAS  Google Scholar 

  5. Gronenborn, A.M. et al. a novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253, 657–661 (1991).

    Article  CAS  Google Scholar 

  6. Banner, D., Kokkinidis, M. & Tsernoglou, D. Structure of the ColE1 Rop protein at 1.7 Å resolution. J. Mol. Biol. 196, 657–675 (1987).

    Article  CAS  Google Scholar 

  7. Smith, C. & Regan, L. Guidelines for protein design: the energetics of β sheet side chain interactions. Science 270, 980–982 (1995).

    Article  CAS  Google Scholar 

  8. Chakrabartty, A. & Baldwin, R.L. Stability of α-helices. Adv. Prot. Chem. 46, 141–76 (1995).

    CAS  Google Scholar 

  9. Kim, C.A. & Berg, J.M. Thermodynamic β-sheet propensities measured using a zinc-finger host peptide. Nature 362, 267–270 (1993).

    Article  CAS  Google Scholar 

  10. Smith, C.K., Withka, J.M. & Regan, LA Thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry 33, 5510–5517 (1994).

    Article  CAS  Google Scholar 

  11. Minor, Jr., D.L. & Kim, P.S. Measuring the β-sheet forming propensities of amino acids. Nature 367, 660–663 (1994).

    Article  CAS  Google Scholar 

  12. Munson, M. et al. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Prot. Sci. 5, 1584–1593 (1996).

    Article  CAS  Google Scholar 

  13. Predki, P.F., Nayak, L.M., Gottlieb, M.B. & Regan, L. Dissecting RNA-protein Interactions: RNA-RNA Recognition by Rop Cell 80, 41–50 (1995).

    Article  CAS  Google Scholar 

  14. Gamier, J., Osguthorpe, D.J. & Robson, B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120 (1978).

    Article  Google Scholar 

  15. Altieri, A.S., Hinton, D.P. & Byrd, R.A. Association of bimolecular systems via pulsed field gradient NMR self-diffusion measurements. J. Am. Chem. Soc. 117, 7566–7567 (1995).

    Article  CAS  Google Scholar 

  16. Stejskal, E.O. & Tanner, J.E. Spin Diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965).

    Article  CAS  Google Scholar 

  17. Regan, L. & DeGrado, W.F. Characterization of a helical protein designed from first principles. Science 241, 976–978 (1988).

    Article  CAS  Google Scholar 

  18. Hecht, M.H., Richardson, J.S., Richardson, D.C. & Ogden, R.C. De novo design, expression, and characterization of Felix: a four-helix bundle protein of native-like sequence. Science 249, 884–891 (1990).

    Article  CAS  Google Scholar 

  19. Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M. & Hecht, M.H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).

    Article  CAS  Google Scholar 

  20. Piantinin, U., Sorensen, O.W. & Ernst, R.R. Multiple quantum filters for elucidating NMR coupling networks. J. Am. Chem. Soc. 104, 6800–6801 (1982).

    Article  Google Scholar 

  21. Braunschweiler, L. & Ernst, R.R. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528 (1983).

    CAS  Google Scholar 

  22. Kabsch, W. & Sander, C. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc. Natl. Acad. Sci USA 81, 1075–1078 (1984).

    Article  CAS  Google Scholar 

  23. Bowie, J.U., Reidhaar-Olson, J.F., Lim, W.A., Sauer, R.T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science 247, 1306–1310 (1990).

    Article  CAS  Google Scholar 

  24. Bowie, J.U., Luthy, R. & Eisenberg, D.A. Method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991).

    Article  CAS  Google Scholar 

  25. Munson, M., Predki, P.F. & Regan, L. ColE1-compatible vectors for high-level expression of cloned DNAs from the T7 promoter. Gene 144, 59–62 (1994).

    Article  CAS  Google Scholar 

  26. Alexander, P., Fahnestock, S., Lee, T., Orban, J. & Bryan, P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: Why small proteins tend to have high denaturation temperatures. Biochemistry 31, 3597–3603 (1992).

    Article  CAS  Google Scholar 

  27. Tanner, J.E. Use of the stimulated echo in NMR diffusion studies. J. Chem. Phys. 52, 2523–2526 (1970).

    Article  CAS  Google Scholar 

  28. Kay, L.E., Keifer, P., Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

  29. Kraulis, P.J. Molscript: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Predki, P.F., Agrawal, V., Brünger, AT. & Regan, L. Amino-acid substitutions in a surface turn modulate protein stability. Nature Struct. Biol. 3, 54–58 (1996).

    Article  CAS  Google Scholar 

  31. Smith, C.K., Munson, M. & Regan, L. Studying α-helix and β-sheet formation in small proteins. Techniques in Protein Chemistry, Vol VI (Academic Press, San Diego, CA, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalal, S., Balasubramanian, S. & Regan, L. Protein alchemy: Changing β-sheet into α-helix. Nat Struct Mol Biol 4, 548–552 (1997). https://doi.org/10.1038/nsb0797-548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0797-548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing